Metodi e Modelli 3D per l'analisi, la classificazione e l'interpretazione di reperti archeologici

Silvia Biasotti Bianca Falcidieno CNR - IMATI

✓ afferisce al DIITET

- 🗸 3 sedi
 - Pavia, presso Polo Universitario
 - Milano, presso Area della Ricerca (Area 1)
 - Genova, presso Area della Ricerca

✓ personale

– 57 strutturati, 20 in formazione

✓ missione

 fornire competenze e infrastrutture per lo sviluppo della matematica applicata e dell'informatica matematica come strumenti per affrontare le sfide dell'ingegneria e della società

Metodi e modelli 3D

Pavia

Milano

CNR-IMATI

CNR-IMATI

Modellistica Matematica

Analisi Numerica e Calcolo Scientifico

Studio teorico di PDE

Metodi numerici per la soluzione di PDE

meccanica di contatto, elasticità lineare e deformazioni, plasticità, elettromagnetismo,.. Modellazione, analisi e confronto di forme geometriche

Elaborazione parallela e distribuita

Rappresentazione della conoscenza

Geometria e topologia computazionale

Modelli e Strumenti per HPC e sistemi distribuiti

Formalizzazione della conoscenza, semantic web

design, confronto, riconoscimento, similarità e motori di ricerca 3D, big data 3D Modellizzazione di sistemi stocastici

Sviluppo ed applicazioni di modelli statistici

Modelli statistici per studi sperimentali e osservazionali

Statistica bayesiana

Modelli stocastici

processi ambientali, industriali, ingegneria, finanza, biologia medicina,..

PAVIA

GENOVA

MILANO

15/04/2019

IMATI - prospettiva scientifica

Results in the last 3 years

- 13 EU Projects (3 H2020, 1 ERC)
- 20 National/Regional projects
- ≈ 130 International Publications (60 ISI journal papers)
- ≈ 20 Research Fellows and Students per year
- ≈ 900 K Euro average external revenues per year
- 9 International Conferences and Workshops organized & chaired (Graphics & Cultural Heritage October 2016)

Eurographics Genova 6-10 maggio 2019

more than 100 presentations, new think tank sessions, electronic theater, industrial program, 3 co-located workshops

15/04/2019

Learning at EG2019

2 Tutorials

- T1: Deep Learning for Computer Graphics and Geometry Processing
- T4: Learning Generative Models of 3D Structures

✓ 4 Paper sessions

- FP10: Learning to render
- FP12: Learning to animate
- FP15: Learning images
- SP5: Learning and Networks
- 2 Think tanks
 - TT1: CreativeAI AI meets Graphics Challenges and Opportunities Ahead
 - TT2: The future of avatar-human interaction in VR, AR and mixed reality applications

how to classify and explore collections of 3D data?

with a special eye to archaelogical 3D data

20 billions of points,

~1000 LAS files

✓ 3D models are intrinsically complex

 high resolution scans are now available and contains millions or billions of points (and faces)

34,5 millions of points

04/2019

✓ 3D models are intrinsically complex

 high quality scans are now available and contains millions or billions of vertices (and faces)

✓ 3D models cannot be handled as images

- illumination, views, occlusions are not an issue...
- but issues are: pose invariance, incompleteness, noisy data, ...

- ✓ 3D models are intrinsically complex
 - high quality scans are now available and contains millions or billions of vertices (and faces)

\checkmark 3D models cannot be handled as images

- illumination, views, occlusions are not an issue..
- but issues are: pose invariance, incompleteness, noisy data, ...
- ✓ 3D content needs modalities for searching which go beyond classical keyword search

- ✓ 3D models are intrinsically complex
 - high quality scans are now available and contains millions or billions of vertices (and faces)
- ✓ 3D models cannot be handled as images
 - illumination, views, occlusions are not an issue..
 - but issues are: pose invariance, incompleteness, noisy data, ...
- 3D content needs modalities for searching which go beyond classical keyword search
- we are addressing similarity reasoning in collections of 3D models with heterogeneous properties and shape
 - geometric shape...
 - ... but also material, color, decorations, common parts

adapt to the different user requests Metodi e modelli 3D

challenges

Re-Unification

- to create software tools to allow archaeologists & curators to reconstruct shattered or broken CH objects
- to recognise associations between artefacts to allow new knowledge and understanding of past societies
- to identify and re-unify parts of a cultural object that has been separated across collections

we need to tune similarity the specific use

- if two fragments belong to the same statue, then probably they have the same thickness
- if two fragments belong to the same statue and are contiguous to each other, then probably
 - they have the same curvature
 - the decorations are compatible

distinction among fragments that are <u>sherd-like</u> and fragments with an almost *volumetric* shape

similarity assessment: information about..

- geometry/morphology

 shape of sherds / fragments –
 3D scanning
 - shape of features
 - patterns, decorations, features,...
- ✓ color
 - scanning process
 - chemical analysis, pigment composition
- ✓ x-ray fluorescence, ...

museum catalogues
 archeological descriptions
 curated data

results

thickness, curvature, shape & decorations drive the GRAVITATE "similarity engine"

http://gravitate-project.eu/?q=content/dashboard

Biasotti et al., (2019), Context-adaptive navigation of 3D model collections, **Computers&Graphics**

Metodi e modelli 3D

15/04/2019

an example on man-made objects

multi-criteria search, extension to generic repositories

 management of cross- and multi- modality searches and datasets (sketches, images, 3D models, time-varying objects, object sub-parts, features, etc..)

deep learning: the technique that quietly changed Computer Vision

✓ 2012: A deep convolutional neural network wins the ImageNet Large Scale Visual Recognition Challenge

red fox (100) hen-of-the-woods (100)

tiger (100)

Blenheim spaniel (100)

Hardest classes

muzzle (71)

hook (66)

spotlight (66)

Image classification

Easiest classes

ibex (100) goldfinch (100) flat-coated retriever (100)

hatchet (68) water bottle (68) velvet (68)

deep neural networks on images

Deep neural network consisting of \boldsymbol{L} layers

Layer 1 Layer 4 Layer 10 from simple to abstract structure

...and 3D data?

a tutorial on 3D DeepLearning, CVPR 2017, http://3ddl.stanford.edu/

- \checkmark content analysis
 - object classification
 - scene parsing
 - correspondence

✓ 3D synthesis

- reconstruction from images
- shape completion and modeling

✓ 3D assisted image analysis
 – cross-view image retrieval

15/04/2019

the representation issue

images have a unique representation with a regular data structure, where as 3D objects do not

1	44	33	12	20	23	35	14
51	16	40	32	46	48	28	17
29	60	3	63	49	55	36	7
52	22	26	41	38	10	61	53
2	24	19	11	34	43	5	8
57	9	37	42	25	21	27	18
30	56	50	64	4	59	6	13
58	47	45	31	39	15	62	54

point cloud

two possible approaches

 converting to regular grids and use traditional architectures for Euclidean data

✓ defining non-Euclidean CNNs

converting to regular grids

voxel-based representations

• multiple 2D views

• embedding domains

Flat-torus ${\mathcal T}$ with 4 replicas of ${\mathcal S}$

Surface ${\mathcal S}$ with sphere topology

the impact of deep learning on data analysis and math

should we "fight back and seek ways to fuse ideas from deep learning into our more solid foundations"?

[Michael Elad: Deep, Deep Trouble, <u>https://sinews.siam.org/Details-</u> <u>Page/deep-deep-trouble</u>]

If the challenge for geometry and topology could be to model what cannot be, or requires too much effort to be, learned automatically (e.g., built-in invariance or lack of large training sets, e.g., CH)

challenges

✓ pattern recognition for surfaces

 recognition of complex features: semantic elements, decorations, patterns, style,...

Torrente, Biasotti & Falcidieno (2018) Recognition of feature curves on 3D shapes using an algebraic approach to Hough transforms. **Pattern recognition**

Moscoso Thompson & Biasotti (2018) Description and Retrieval of Geometric Patterns on Surface Meshes using an edge-based LBP approach. **Pattern recognition** Moscoso Thompson & Biasotti, (2019), Color patterns retrieval on surface meshes using the edgeLBP description, **Computers&Graphics**

some thoughts

 computational methods have the potential to support archeological studies with quantitative evaluations of their findings

towards 3D annotations

- we humans think fast (intuition or heuristic process) and slow (conscious, rule-based reasoning).
 - typical machine learning algorithms like deep neural networks usually just think fast
- \checkmark we humans are able to model information.
 - with deep learning based solutions, the interpretability of the solution is an issue