IMMAGINI SATELLITARI GRATUITE PER L'AGGIORNAMENTO CARTOGRAFICO E LO STUDIO DEL TERRITORIO: ALCUNE APPLICAZIONI IN LIGURIA

tel. 010 548 4170 fax sportello 010 548 4184

www.cartografia.regione.liguria.it

SERVIZI INFORMATIVI TERRITORIALI AMBIENTALI REGIONALI REGIONE LIGURIA | SETTORE INFORMATICA

CSUT

Andrea De Felici

e Telematici Regionali

infoter@regione.liguria.it

via Fieschi, 15 16121 - GENOVA

SITAR - Regione Liguria Settore Sistemi Informativi

L'UFFICIO CARTOGRAFICO REGIONALE

Il **Sitar**, Servizi informativi territoriali ambientali regionali, è il centro servizi della Regione Liguria che produce e distribuisce dati cartografici ed alfanumerici sul territorio ed ambiente ligure.

Al Sitar compete lo svolgimento delle attività in materia di:

- organizzazione e sviluppo del SI ambientale e territoriale
- sviluppo e realizzazione dell'Infrastruttura per l'Informazione Geografica ligure integrata
- definizione degli standard informatici
- divulgazione delle informazioni territoriali
- produzione di cartografia tematica
- aggiornamento e messa a disposizione delle informazioni geo-topocartografiche di base

Il Geoportale regionale

Rappresenta la parte visibile di una complessa infrastruttura utilizzata per gestire i dati cartografici di Regione Liguria e costituisce il principale punto d'accesso e di fruizione gratuita dell'informazione cartografica istituzionale delle Liguria ed è raggiungibile al seguente indirizzo:

https://geoportal.regione.liguria.it

IL PROGRAMMA «COPERNICUS»

Copernicus è un'iniziativa dell'Agenzia Spaziale Europea finalizzata a rendere autonoma l'UE nel settore della Sicurezza e dell'Ambiente, tramite campagne di telerilevamento satellitare.

Il programma Copernicus si fonda su 4 pilastri:

- Componente spaziale (costellazione di satelliti Sentinel e relative infrastrutture)
- Misure in situ (aeree e terrestri)
- Standardizzazione dei dati
- Servizi per gli utenti (come la fornitura gratuita dei dati)

La famiglia dei satelliti Sentinel

Sentinel 1: coppia di satelliti (S1A e S1B): fornisce informazioni radar su terre ed oceani Sentinel 2: coppia di satelliti (S2A e S2B): fornisce immagini ottiche ed IR ad alta risoluzione per lo studio di suoli, vegetazione, acque ecc.. Sentinel 3: coppia di satelliti (S3A e S3B): fornisce dati ottici, radar, altimetrici e termici per il monitoraggio di terre emerse ed oceani Sentinel 4: satelliti non ancora operativi e destinati allo studio della qualità e caratteristiche dell'aria Sentinel 5: satelliti non ancora operativi e destinati al monitoraggio della composizione atmosferica Sentinel 6: satelliti non ancora operativi e destinati alla misura accurata della superficie marina, per studi oceanografici e sul clima

CSUT

Sentinel – 2: caratteristiche ed applicazioni

Le possibili applicazioni includono:

- Monitoraggio della copertura del suolo e delle sue variazioni
- Applicazioni nel campo dell'agricoltura, come il controllo dei raccolti
- Osservazione sullo stato di salute della vegetazione
- Mappatura delle acque costiere ed interne e monitoraggio ambientale
- Monitoraggio dei ghiacciai e della copertura nevosa
- Mappatura delle inondazioni e gestione del rischio ad esse connesso

Per rispondere a queste esigenze, si avvale si una serie di sensori multispettrali a risoluzione media – alta (pixel a terra da 10 a 60 m) con elevata frequenza di rivisitazione (5 giorni circa di intervallo fra un passaggio e l'altro dei satelliti sulla medesima zona).

Viene garantita una continuità temporale dal punto di vista del tipo di dato con le precedenti generazioni di satelliti come SPOT e Landsat TM, in modo da consentire studi a lungo termine.

Risoluzione radiometrica e spaziale

10 m di risoluzione: visibile ed infrarosso vicino (B2, B3, B4, B8)

20 m di risoluzione: IR vicino e SWIR (B5, B6, B7, B8a, B11, B12)

60 m di risoluzione: aerosol costiero vapor d'acqua e cirri (B1, B9, B10)

CSUT

Prodotti disponibili all'utenza

Le immagini fornite dalla coppia di satelliti Sentinel 2 sono il mosaico di porzioni elementari indivisibili («granules») contenenti tutte le bande spettrali e scaricabili in genere sotto forma di ingombri detti «Tiles» di 100 x 100 Km

REGIONE LIGURIA | SETTORE INFORMATICA

Accesso ai dati Sentinel - 1

I dati sono disponibili gratuitamente agli utenti registrati nell'apposito portale ESA dedicato (*Copernicus Open Access Hub*), disponibile al sito: https://scihub.copernicus.eu/

Accesso ai dati Sentinel - 2

Una volta ottenute le credenziali di accesso, si carica la pagina https://scihub.copernicus.eu/dhus/ e si provvede al login:

CSUT

Accesso ai dati Sentinel - 3

A questo punto si effettua uno zoom sull'area da esaminare, utilizzando l'apposito tasto «*Navigation Mode*»:

Una volta inquadrata la zona di interesse, la si seleziona con il tasto «*Area mode*», trascinando un rettangolo che la comprenda.

Advanced Search								Clear	1. Fare clic quiPer mostrare la finestra
Son	тву: nsing	Date					•	Ascending	2. Inserire
Sen	sing (period	0						L'intervallo temporale
<	October 2019						>		029 - 1029
	01	02	03	04 11	05 12	06 13	07		3 Selezionare
	15	16	17	18	19	20	21		J. JEIEZIUITATE
	22	23	24	25	26	27	28	Product Type	Il satellite di interesse
Tor	29 05	06	07	08	02	10	11	Sensor Mode	4. Selezionare
			innocr	(1	,		Collection	Il tipo di prodotto, la %
Mission: Sentinel-2					2			Product Type	di copertura nuvolosa.
						-	S2MSI2A	5 Lanciare la ricerca	

Accessi alternativi ai dati Sentinel

Oltre al sito ufficiale, è possibile collegarsi a molte altre risorse alternative sul Web che consentono lo scarico gratuito delle immagini Sentinel, come: Il sito americano USGS: Pianca Briora https://earthexplorer.usgs.gov/

il sito inglese SEDAS: https://sedas.satapps.org/#tools

Il sito francese **THEIA**:

https://www.theia-land.fr/en/data-and-services-for-the-land/

Può essere vantaggioso collegarsi a questi portali, in quanto spesso forniscono più servizi rispetto ad ESA, come altre piattaforme satellitari, processamento più completo delle immagini (es. L2A sempre presente...), inoltre in alcuni casi è possibile automatizzare selezione e scarico dei dati...

CSUT

SNAP – SENTINELS APPLICATION PLATFORM ESA

Si tratta di un programma appositamente creato dall'ESA per gestire prodotti Sentinel e di altre piattaforme. Essendo gratuito e di uso semplice, è stato impiegato in Regione Liguria per le elaborazioni descritte più avanti

SNAP – Esplorazione dei dati

Una volta caricato il dato è possibile vederne le caratteristiche nella finestra «Product Explorer»: tutti gli elementi che lo compongono sono contenuti in una serie di sottocartelle disposte secondo una struttura ad albero:

SNAP – Caricamento immagini Per visualizzare le immagini, è possibile caricare una singola banda o una combinazione di bande con un clic nella finestra «Product Explorer»: File Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help Workspace 🕺 [1] Sentinel 2 MSI Natural Colors RGB 88 198-2/302-4MB [1] Sentinel 2 MSI Natural Colors RGB - 0 X Product Explorer # Pixel Info [1] S2A_MSIL2A_20 3. Visualizzazione del 140204 Rand Maths... 🖶 🦳 Metadata Add Elevation Band 🖻 · 💼 Index Codings risultato nella finestra Vector Data Add Land Cover Band 🗄 🔄 Bands Group Nodes by Type D. sun Select RGB-Image Channels **Open RGB Image Window** n view Open HSV Image Window quality Profile - 🖪 🗎 🗎 B1 (443 nm) Sentinel 2 MSI Natural Colors Close Product B2 (490 nm) Close All Products Red. B4 ¥ B3 (560 nm) Green: B3 -Close Other Products B4 (665 nm) Blue: B2 ¥ B5 (705 nm) Save Product B6 (740 nm) Store RGB channels as virtual bands in current product Save Product As... 2. Scelta della B7 (783 nm) Cut Ctrl+X B8 (842 nm) OK Cancel B8A (865 nm) Ctrl+C Copy composizione di B9 (945 nm) Paste Ctrl+V B11 (1610 nm) Delete B12 (2190 bande opportuna 1. Clic destro sul nome H- Masks

In alternativa, fare doppio clic sulla singola banda per visualizzarla.

Esempi di composizioni RGB

Colori naturali RGB **B4 B3 B2**

Infrarosso falso colore RGB B8 B4 B3

Infrarosso falso colore RGB **B8A B11 B12** risoluzione di **20 m**

CSUT

Evidenzia le aree incendiate

SNAP – funzionalità e applicazioni sperimentate

- Creazione di indici a partire dalle bande spettrali (NBR, NDVI) \rightarrow individuazione aree percorse dal fuoco, variazioni di biomassa vegetale
- Classificazioni automatiche e semiautomatiche delle immagini
- «Graph Editor»: disegno di flussi di lavoro tramite diagrammi a blocchi
- «Batch Processing»: estensione dei flussi di lavoro impostati a serie di immagini omologhe
- «Time Series»: analisi del risultato del batch processing pixel per pixel e controllo dell'evoluzione di un parametro al trascorrere del tempo

Tutorial disponibili online

Sul sito ufficiale dell' ESA (sezione «Documentation») sono disponibili numerosi tutorial video che approfondiscono le varie funzionalità:

CSUT

Esempi di applicazioni pratiche nel campo dello studio del territorio

Vediamo alcuni esempi delle applicazioni allo studio del territorio delle funzionalità di SNAP utilizzate sulle immagini Sentinel-2:

- VARIAZIONI TEMPORALI DI BIOMASSA VEGETALE
- INDIVIDUAZIONE AREE PERCORSE DAL FUOCO
- CLASSIFICAZIONI AUTOMATICHE E SEMIAUTOMATICHE DEL TERRITORIO PER L'INDIVIDUAZIONE DELLE AREE URBANIZZATE

Variazioni di biomassa vegetale

E' stato calcolato in ambiente SNAP l'indice NDVI di immagini della stessa zona riprese in 2 anni successivi (2016 e 2017) ed è stata computata la differenza matriciale pixel a pixel dei 2 indici: NDVI2016-NDVI2017; in questo modo sono state evidenziate zone che hanno subito una forte diminuzione di tale indice e quindi di biomassa vegetale. Tale situazione può indicare varie problematiche connesse allo stato di salute della vegetazione.

La variazione temporale dell'NDVI evidenzia zone caratterizzate da una variazione di biomassa vegetale. La diminuzione può essere provocata da diverse cause: taglio boschivo, incendio, stress idrico, fitopatologia.

Variazioni di biomassa vegetale causate dagli incendi

Incendio intercorso tra il 2016 ed il 2017

L'aspetto delle aree è sfumato, non netto, senza ombre ma molto circoscritto e facilmente localizzabile

Variazioni di biomassa dovute a tagli boschivi

Disboscamento occorso tra il 2016 ed il 2017

False color IR 2016

False color IR 2017

NDVI2016- NDVI2017

L'aspetto delle aree è molto netto e le ombre sono molto marcate

Individuazione delle aree percorse dal fuoco

La piattaforma Sentinel-2 acquisisce porzioni di spettro elettromagnetico (bande **B8A**, **B11**, **B12**) molto adatte alla individuazione delle aree percorse dal fuoco.

Sentine	2 MSI Natural (Colors (modified)		- - -	ī
ladı	D10				
ceu.	DIZ			Y Ŀ	
Green:	B11			× .	•••
Blue:	BBA			~ .	
- Stor	re RGB channels	as virtual bands in	current product	Expressions are vi	alio

La composizione RGB indicata in figura evidenzia chiaramente il perimetro dell'area bruciata tra gli anni 2016 e 2017...

Indice NBR - Normalized Burn Ratio

La vegetazione in buona salute ha una riflettanza molto alta nel infrarosso vicino NIR e bassa nello SWIR, mentre le aree bruciate hanno comportamento opposto.

Confronto dell'Indice NBR fra due anni diversi

Gorda

2016

2017

Classificazione automatica delle immagini

Con le classificazioni facciamo un primo timido approccio al mondo dell'AI... Il software individua in automatico gruppi di pixel omogenei (cluster), in base al loro valore di DN e li assegna a classi distinte. L'operatore sceglie poi quelle di interesse

3] class_indices - 231084_kmeans_20c_urbanizzato - C:\PROGETTI\231084_kmeans_20	Dc, urbanizzato.tif - SNAP	x
Eile Edit ⊻iew Anałysis Layer Vector Raster Optical Radar Iools Window Help		Q • Search (Ctrl+I)
🚭 🍓 🦻 🖉 🎜 👪 📕 🗩 🗟 💎 Ӣ Ф.А 🔟 🤅	◎ ⊮ ⊵ ⊻ Σ % ≿ ቼ & °° € 🛒 🐄 ⊧ 🧑 ۹ 옷 °° ≻ マ 🗖 🥎 @ èè ⇔ 🔨	🔹 ≿ 🕺 😵 🚨 🚝 🚰 💁 🖉 🔹 🔛 💈 🔹
Product Explorer × Pixel Info Projects	- 1 Ikonos RGB (2) ×	
Wector Data Wector Data Bands		Product Uhrary
dass_indices		
dass_7 6 6.144% Cluster 6, C dass_8 7 4.23% Cluster 7, C dass_9 8 4.23% Cluster 7, C dass_10 9 3.642% Cluster 7, C dass_11 10 3.75% Cluster 9, C dass_12 11 3.25% Cluster 10, dass_14 13 2.192% Cluster 13, dass_15 16 1.701% Cluster 15, dass_18 17 1.65% Cluster 15, dass_13 12 2.565% Cluster 19, dass_13 12 2.566% Cluster 19, dass_13 12 2.566% Cluster 18,		
Mappatura		
automatica		
dell'urbanizzato	Х - Y -	Lat Lon Zoom Level 🔵 2

False color IR 2017

False color rgb:12,11,8a

NBR 2017

Classificazione automatica su NBR 2017

Classificazione semiautomatica delle immagini

Si individuano a priori delle aree di training, disegnando dei poligoni corrispondenti a determinati elementi del territorio (coltivi, foreste., ecc...) con caratteristiche spettrali ben definite, per addestrare l'algoritmo di *machine learning* a cercare quelle determinate tipologie di aree nel resto dell'immagine:

Visualizzazione dei risultati ed esportazione dell'output

L'algoritmo suddivide l'immagine in classi distinte secondo la firma spettrale degli elementi e le indicazioni dell'operatore: coltivi, foreste, urbanizzato...

I risultati dell'operazione di classificazione sono immagini in cui ad ogni colore corrisponde una classe di oggetti, che possono essere esportate per consentire una loro ulteriore elaborazione in ambiente GIS

SITAR - CASI DI STUDIO SPECIFICI

- Sperimentazione sulla mappatura automatica delle AREE • **INCENDIATE 2016 - 2017** tramite misura della variazione dell'indice NBR calcolato su immagini Sentinel 2.
- Studio dei cambiamenti dell'USO DEL SUOLO tramite algoritmi di Change Detection e variazione dell'indice NDVI da immagini Sentinel 2, coadiuvate da un riscontro in ambiente Google Earth o Esri Image.
- Tutti le attività sono state effettuate con immagini e programmi gratuiti.

Individuazione delle aree incendiate

- Ricerca di immagini Sentinel 2 acquisite nella stessa stagione, ma di due anni consecutivi
- 2. Ricampionamento di tutte le bande (a 10 m) per poter eseguire operazioni di algebra matriciale «pixel a pixel».
- 3. Calcolo dei valori di NBR per ogni anno
- 4. Differenza degli NBR 2017 NBR 2016
- 5. Classificazione dell'immagine risultante \rightarrow aree incendiate
- 6. Vettorializzazione

CSUT

Differenza NBR 2017 – NBR 2016→classificazione automatica

Gorda

False color IR 2016

False color IR 2017

NBR2017-NBR2016

CSUT

Classificazione Unsupervised

Differenza NBR 2017 – NBR 2016→classificazione automatica

Gorda

False color IR 2016

NBR2017-NBR2016

False color IR 2017

Classificazione Unsupervised

CSUT

Confronto con i dati vettoriali di archivio

Sono stati confrontati i risultati ottenuti da questo metodo con i contorni degli incendi rilevati a terra nel 2016, rilevando una migliore precisione del dato satellitare rispetto a quello acquisito sul terreno.

Procedura per la datazione degli incendi

Sono state applicate alcune funzioni di SNAP che permettono di creare flussi di lavoro tramite diagrammi a blocchi (Graph Builder), applicarli in batch a liste di immagini relative alla stessa porzione territoriale acquisite in momenti diversi (Batch Processing) ed infine controllare a livello di singolo pixel l'evoluzione di indici o parametri nel tempo (Time Series).

Graph Editor \rightarrow Batch Processing \rightarrow Time Series

Graph Builder

Consente di creare un flusso di lavoro rappresentato da una sequenza di funzioni che vengono applicate in successione alle immagini di input, nel nostro caso: ricampionamento (resample), estrazione di una porzione (subset) e calcolo NBR (Band Maths):

Batch Processing

Applica il flusso di lavoro creato in precedenza, automaticamente ad una serie di immagini della stessa zona riprese in tempi diversi, nel nostro caso una al mese (se disponibili):

I/O Parameters Resample	Subset BandMath	IS				Mars 1
File Name	Туре	Acquisition	Track	Orbit	*	1622
S2A_MSIL2A_20160522T10	S2_MSI_Level	22May2016	99999	99999		Sol Sol
S2A_MSIL2A_20171014T10	S2_MSI_Level	140ct2017	99999	99999		164
S2A_MSIL2A_20160909T10	S2_MSI_Level	09Sep2016	99999	99999		
S2A_MSIL2A_20170616T10	S2_MSI_Level	16Jun2017	99999	99999		
S2A_MSIL1C_20170107T10	S2_MSI_Level-1C	07Jan2017	99999	99999	2	
Target Folder Save as: BEAM-DIMAP Directory:	~				5 Products	
C:\TELERILEVAMENTO\AREE		e_series_NBR \ou	t			
Skip existing target files	Keep source p	roduct name				

Time Series

Dopo aver ordinato cronologicamente i risultati del Batch Processing, si analizzano i valori dell'indice calcolato nei punti di interesse in funzione del tempo, in modo da determinare la data approssimativa dell'incendio:

Cuit v	/iew Analysis Layer Ve	ctor Rast	er Optical F	Radar Too	Is Window	Help	
1 %	5 C	24.7.6MB	6	4 4		Time	φ,λ 🛕
ime Series	Analysis Settings						×
		12	<u></u>				
		Add Gr	aph 🔽 Show Gr	id 🔽 Show Le	egend		
	Graph 1						^
		Type	Acquisition	Track	Orbit	슈	
	File Name						
	File Name S2A MSIL2A 20160522T10	BandMath	22May2016	99999	99999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10	BandMath BandMath	22May2016 09Sep2016	99999	99999 99999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL2A_20170107T10	BandMath BandMath BandMath	22May2016 09Sep2016 07Jan2017	99999 99999 99999	99999 99999 99999	-	
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL1C_20170107T10 S2A_MSIL1C_20170616T10	BandMath BandMath BandMath BandMath	22May2016 09Sep2016 07Jan2017 16Jun2017	99999 99999 99999 99999 99999	99999 99999 99999 99999 99999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL1C_20170107T10 S2A_MSIL2A_20170616T10 Subset_S2A_MSIL2A_20170	BandMath BandMath BandMath BandMath BandMath	22May2016 09Sep2016 07Jan2017 16Jun2017 05Aug2017	999999 99999 99999 99999 99999 99999	99999 99999 99999 99999 99999 99999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL1C_20170107T10 S2A_MSIL2A_20170616T10 Subset_S2A_MSIL2A_20170 S2A_MSIL2A_20160909T10	BandMath BandMath BandMath BandMath BandMath BandMath	22May2016 09Sep2016 07Jan2017 16Jun2017 05Aug2017 09Sep2016	99999 99999 99999 99999 99999 99999 9999	99999 99999 99999 99999 99999 99999 9999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL1C_20170107T10 S2A_MSIL2A_20170616T10 Subset_S2A_MSIL2A_201700 S2A_MSIL2A_20160909T10 S2A_MSIL2A_20171014T10	BandMath BandMath BandMath BandMath BandMath BandMath BandMath	22May 2016 09Sep2016 07Jan2017 16Jun2017 05Aug2017 09Sep2016 14Oct2017	99999 99999 99999 99999 99999 99999 9999	99999 99999 99999 99999 99999 99999 9999		
	File Name S2A_MSIL2A_20160522T10 S2A_MSIL2A_20160909T10 S2A_MSIL1C_20170107T10 S2A_MSIL2A_20170616T10 Subset_S2A_MSIL2A_20170014T10 S2A_MSIL2A_20171014T10	BandMath BandMath BandMath BandMath BandMath BandMath	22May 2016 09Sep2016 07Jan 2017 16Jun 2017 05Aug 2017 09Sep 2016 14Oct 2017	99999 99999 99999 99999 99999 99999 9999	99999 99999 99999 99999 99999 99999 9999	· □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	

Time series dell'andamento dell'indice NBR → datazione degli eventi

💹 [23] newBand - S2A_MSIL2A_20171014T102021_N0205_R065_T32TMQ_20171014T102235 - C:\TELERILEVAMENTO\AREE_INCENDIATE\tim	me_series_NBR\out\S2A_MSIL2A_20171014T102021_N0205_R065_T32TMQ_20171014T102235.dim - SNAP	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Analysis Layer Vector Raster Optical Radar <u>T</u> ools <u>W</u> indow <u>H</u> elp	Q - Seard	n (Ctrl+I)
📾 🖣 🌗 🥐 🚛 🔏 🚚 🗩 🔿 🔍 🗁 🖉 🖘 🔟 🚳 🗟 🗠 🖄 🕉 🐻	\$ <mark> </mark>	> ₩ * *
Product Explorer × Pixel Info Projects □ [7] Sentinel 2 MSI False-c ⊕ □ [11] S2A_MSIL2A_20171014T102021_N0205_R065_T32TMQ_20171014T102235 □ [7] Sentinel 2 MSI False-c ⊕ □ [12] S2A_MSIL2A_20171014T102021_N0205_R065_T32TMQ_20171024T140204 □ [13] Subset_\$2A_MSIL2A_20171044T102211_N0205_R065_T32TMQ_20171014T102235_resampled_BandMat	incendi_2016_2017 - Attributi elemento	Reduct Li
(14) S2A_MSIL 2A_201605271102032_N0202_R065_T32TMQ_2016052271102029 (15) S2A_MSIL 2A_201605971102032_N0204_R065_T32TMQ_201607111102030 (16) S1A_MSIL 2_20160997102032_N0204_R065_T32TMQ_20160997102108 (17) S2A_MSIL (2_20161087102222_N0204_R065_T32TMQ_20160997102108 (17) S2A_MSIL (2_20161087102222_N0204_R065_T32TMQ_20161087102425	DN 13 🜩	ray
[16] S24_MSIL24_20170516T102021_10025_R065_T32TMQ_2017051012031 [16] S24_MSIL24_20170516T102021_10025_R065_T32TMQ_2017051012031 [16] S24_MSIL24_20170705T102021_N0205_R065_T32TMQ_20170705T102301 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102301 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102301 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102301 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102301 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102230 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102230 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102230 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102259 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102259 [16] S24_S1L24_20170705T102021_N0205_R065_T32TMQ_20170705T102259 [16] S24_S1L24_20170705T10231 [16] S24_S1L24_20170705T10231 [16] S24_S1L24_20170705T10231 [16] S24_S1L24_20170705T10231 [16] S24_S1L24_20170705T10231 [16] S24_S1L24_20170705T1023 [16] S24_S1L24_20170705 [16] S24_S1L24_20170705 [16] S24_S1L24 [16] S24_S1L24_20170705 [16] S24_S1L2 [16] S24_S1L	data_aprox 20170706-20170726	18.
C [2] S2_MSL24_20171014T102021_10205_R065_T32TMQ_20171014T102235 C [24] S2A_MSL24_20171024T102111_N0206_R065_T32TMQ_20171024T140204 C Metadata C Vector Data G Bands		35
Pers@and U NRE2015.6NE2017 WeR2017-VBR2017 U NER2017-VBR2015 E [25] S24_MSI.24_20171024T102111_N0206_R065_T32TMQ_20171024T140204_imeans D Wetadata O U Netadata	OK Annulla	
⊕- index Comps ⊕- Vector Data ⊕- Bands □ dess_indces		
6 Juglio 2017		
0 lugilo 2017		
26 luglio 2017		
Acquisition Date	X 9039 Y 3484 Lat 44°25'01"N Lon 9°05'33"E Zoom	1:3.0 Level 0

NBR costante nel periodo indagato \rightarrow non ci sono variazioni \rightarrow cava

Gli algoritmi di Change Detection indicano dove focalizzare lo studio

Gorda

Uso suolo 2016

Poligoni da aggiornare

Sono evidenziati in verde aumenti e in giallo le diminuzioni del valore del DN dal 2016 al 2018 oltre una certa soglia impostata Change Detection 2016 - 2018

Uso suolo 2018

CSUT

Sulle immagini Google satellite si valutano in dettaglio le modifiche da effettuare

Alcune considerazioni

Le attività fin qui sperimentate risultano promettenti, ma sono state portate avanti sinora secondo un approccio «tradizionale», con alcuni svantaggi:

- Frequenti interventi dell'operatore
- Difficoltà nel definire le giuste soglie per evidenziare i fenomeni in immagini diverse
- Problemi nel trattare grosse moli di dati
- Processi laboriosi e poco automatizzati

Un uso più esteso e «consapevole» delle funzionalità di **AI**, migliorerebbe nettamente la performance nell'analisi e gestione di grandi quantità di informazioni, consentendoci di passare più facilmente dalla fase di pura sperimentazione a quella operativa su tutto il territorio regionale e per intervalli temporali più estesi.

