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Simone Merello - Head of Deep AI @ Perceptolab

Academic background:
● Computer scientist with focus on data 

science
● Researcher @ NTU university of Singapore

Now:
● Still ML Researcher with focus on Computer 

Vision: TensorFlow, Pytorch
● MLOps engineering to help team 

collaboration and automation of ML 
pipelines.

Leisure:
● Love traveling and love water sports!



A practical example
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Churchill Way, Chapeltown, 
Sheffield S35 2PY

145A High St, Newarthill, Motherwell ML1 
5JH

New Inn, 183 Duke St, Sheffield S2 5QN

→ New feature: Real Estate Appraisal
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ML Development cycle



5

But then something happens… [examples]

- New feature doesn’t work as expected  → MONITORING

- More data comes in → FAST ITERATION 

- New team members → NEED FOR COOPERATION

- Multiple projects / data / models / experiments → TRACKING

- Performance degradation with time → AUTOMATIC RE-TRAINING
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ML Systems require organization!

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems” .2015
[2] Amershi, Saleema, et al. "Software engineering for machine learning: A case study." 2019
[3] Breck, Eric, et al. "The ml test score: A rubric for ml production readiness and technical debt reduction." 2017

[1] Some Issues of ML Systems

1. Entanglement: "Changing 
Anything Changes Everything”

2. Tracking dependencies: data, 
code, env, input models

3. Cascading: the output of a 
model A might affect input of an 
[undeclared] model B

4. Feedback Loops: models 
influencing each other if they 
update over time
 

5. Staleness: if the input changes 
during time, the model has to 
adapt

[2] ML Systems Best practices

1. Data management: Ensuring 
availability, accessibility, quality 
and versioning of data.

2. Pipelines: supporting data 
preprocessing, train, test and 
deployment

3. Automation of training and 
deployment pipelines allows 
fewer deployment issues

[3] ML Systems readiness

1. Features and data: assert 
expectations, cost/benefit tradeoff, 
fast addition of new features, tested 
features creation

2. Model development: versioning, 
evaluate {metrics = KPI, staleness, 
fairness}.

3. Infrastructure: reproducibility, 
integration tests, canary testing, 
quick rollback

4. Monitoring: monitor {changes in 
dependencies, input expectations, 
staleness}
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MLOps
Management of ML Systems: operationalize the steps than produce, serve and improve ML models 
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Some tools [divided by their native usage]

https://demoapp.trains.allegro.ai/

https://demoapp.trains.allegro.ai/
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https://mattturck.com/data2020/

Tools landscape

https://mattturck.com/data2020/
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https://about.mlreef.com/images/blog/ml_landscape.png                                                         https://docs.google.com/spreadsheets/

ML tools

~300

https://about.mlreef.com/images/blog/ml_landscape.png
https://docs.google.com/spreadsheets/d/1QGvIEJIdinzh05nud-w_IDvXz3uehyYz9__vhaPOISg/edit?usp=sharing
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[SOME] Features you might look for
ML PERSPECTIVE FOR BATCH LEARNING TASKS

DATA MODELLING DEPLOY [1]

Versioning Track experiments Automated CI/CD

Availability Reproducibility (dependencies) Track Deployment

Training - Serving consistency Track outputs (models / performances) Canary / Shadow testing

Schedule jobs Compare experiments Automatic Retraining

Exploration Hyperparams Optimization Monitoring data (outliers /  dist. shift)

Data quality checks Infrastructure handling Monitoring model performances

Cataloging Peer reviewing Explaining predictions

Labelling Automatic Scalability

Handle Real time data

Infrastructure

Storage scalability

[1] Klaise, Janis, et al. "Monitoring and explainability of models in production." arXiv preprint arXiv:2007.06299 (2020).



12

Revised Steps

CI/CD:
- Evaluation
- Deployment
- Track deployment

Train:
- Reproducibility
- Versioning
- Experiment Tracking
- Model Registry

Pipeline tools

Automatic Retrain

Data

Data pipelines:
- Solve data deps.
- Scheduling
- Backfilling
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KubeFlow: Pipelines, Notebook Servers, Katib 
(hyperparameter tuning), Artifact Store, KFServing
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Airflow: DAG (chained Operators), 
Scheduler, Executor



DVC
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Why?
1. Easy to setup and use

$ pip install dvc    
2. Can be used for many MLOps steps
3. Is it the best one? NO (It depends on your needs)
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Experiment & Data versioning

data.zip

model.h5

train.py
evaluate.py
data.zip.dvc
model.h5.dvc

train.py
evaluate.py
data.zip
model.h5

commit: 2d01b8e

md5: 2bc...

md5: 21e...

$ git commit -am “..”
$ git push

$ dvc push

$ dvc add model.h5 data.zip

https://github.com/visenger/awesome-mlops/commit/3d01b8ebd110fd8edc578d87ff70360ac6862907
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Pipelines: Training & CI/CD

stages:

 [...]

 featurize:

    cmd: python features.py data/ features

    deps:

    - data/

    - features.py

    outs:

    - features/

  train:

    cmd: python train.py features model.pkl

    deps:

    - features

    - train.py

    outs:

    - model.pkl

[...]

Rerun if something 
change

stages:

 featurize:

    cmd: python featurization.py data/ features/

    deps:

    - path: data/

      md5: 20b78...

    - path: featurization.py

      md5: 28946...

    outs:

    - path: features/

      md5: 52c1f...

  train:

    cmd: python train.py features/ model.pkl

    deps:

    - path: features/

      md5: 52c1f...

    - path: train.py

      md5: 3ffc5...

    outs:

    - path: model.pkl

      md5: b4c48...

Git commit: 2d01b8e

dvc.yaml

$ dvc repro

https://github.com/visenger/awesome-mlops/commit/3d01b8ebd110fd8edc578d87ff70360ac6862907
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Experimentation: Pick up the best model
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Deploy: CI/CD pipeline
stages:

 test_performances:

    cmd: python test_performances.py model.pkl

    deps:

    - test_performances.py

    - model.pkl

    outs:

    - test_result.md

  deploy:

    cmd: python deploy.py test_result.txt model.pkl

    deps:

    - deploy.py

    - test_result.md

    - model.pkl

name: train-my-model

on: [push]

jobs:

  run:

     runs-on: [ubuntu-latest]

     container: docker://dvcorg/cml-py3:latest

     steps:

        - uses: actions/checkout@v2

        - name: cml_run

           env:

              repo_token: ${{ secrets.GITHUB_TOKEN }}

           run: |

              dvc pull model.pkl

           dvc repro

 git config [...]

 git add dvc.lock test_results.txt

 git commit “CI/CD pipeline” --allow-empty 

 git push -u origin HEAD"

CML with DVCDVC Pipeline

Git commit: 
2d01b8e

deploy:
    deps:
    - path: model.pkl
      md5: 20b...
    - test_results.txt

md5: 21e...

https://github.com/visenger/awesome-mlops/commit/3d01b8ebd110fd8edc578d87ff70360ac6862907
https://github.com/visenger/awesome-mlops/commit/3d01b8ebd110fd8edc578d87ff70360ac6862907


How to begin:
1. Tools must be useful: reduce troubles and takes less 

time from the team, not more

2. Start manually, then automate: difficult to choose 
what to automate without knowing what issues are 
there

3. Consider lock-ins: easier to adopt a new tool than to 
leave it

4. Give some extra points to “mature” tools

Simone Merello
Head of Deep AI, 
Perceptolab

Really happy to discuss about these topics 
further!
simone.merello@smartlab.ws
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