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The Origin of Consciousness — How Unaware Things Became Aware, from Kurzgesagt (2019)
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How can we make machines take part
in this orchestra?




How can we build machines

that creatively invent entirely
new theories from data,
like scientists do?

1. Prologue
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Brown Tom B., et al. "Language models are few-shot learners" (2020)
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Alternative route

But how does a scientist work?
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Data as theory-laden observations
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As Al researchers,
what can we learn from this?
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How can we build machines
that creatively invent entirely
new theories from data,

like scientists do?

2. Explanatory Learning



Giorgio Parisi
2021 Nobel laureate
in Physics

«Tanta gente passa il tempo
a fare | puzzle, ecco, la ricerca
e come mettere insieme dei
pezzi che sembrano non
essere connessi 'uno con
I'altro e che se uno risolve
diventano patrimonio
dellumanita»

Interview with Paolo Tarvisi, Il Messaggero, 15/02/2021
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Rationalist perspective shift
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Critical Rationalist Networks
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Results: CRNs vs empiricist models
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Results: CRNs vs empiricist models
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