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Abstract: The study deals with intelligible analytics for performance modelling of vehicle platooning. Knowledge extraction with
rules is targeted to understand safety regions (collision avoidance) of system parameters. Results are shown by feeding data
through simulation to the train of different rule extraction mechanisms. Safety regions are evidenced on test data with statistical
error very close to zero.

1 Introduction
Safety in cyber-physical systems (CPS) [1] means preventing all
the conditions that may lead to dangerous trajectories of the
system. The approach of machine learning (ML) consists of
extracting a model from samples of data that map system
parameters into safe and unsafe predictions. The model drives a
forecast of unsafe conditions as it states if a specific setting of
parameters would bring into danger in the near future. ML is
simply based on available data; so no specific statistical
assumptions are made on the system. This is a great advantage as
finding closed-form formulas of control performance over
communication channels in CPS constitutes a formidable problem
(see, e.g. [2, 3]).

1.1 Vehicle platooning (VP)

VP is taken as a reference here as being representative of one of the
most challenging CPS of the automotive sector [4]. The main goal
in VP is finding the best trade-off between performance (i.e.
maximising speed and minimising vehicles reciprocal distance) and
safety (i.e. avoiding collision) [5]. Most of the literature on this
topic focuses on advanced control schemes while abstracting the
communication medium. Delay of communication is typically
considered as fixed or described through probabilistic models. This
allows the analytical derivation of stability models under some
hypotheses of the dynamical system [6], but it may be unreliable
under realistic conditions. Two branches are evident from the
literature in this respect: the derivation of simple models of the
delay bound that guarantees safety (see, e.g. Section IV.C of [7])
and extensive simulation with visualisation of safety regions under
subsets of parameters when addressing realistic communication [8,
9] and realistic vehicles [10].

1.2 Contribution

A step forward in these two branches relies on (this paper is an
extended version of [11])]:

1. A synthetic representation of the system, still joining all the
parameters involved.

2. Intelligible analytics to drive knowledge extraction from data
through interaction with the user (e.g. what-if analysis [12]).

3. Identification of the largest set of working conditions still
preserving collision avoidance.

4. Sensitivity analysis of collision avoidance.

1.3 Intelligibility

Intelligible models are topical in this perspective, as they drive
situational awareness for human operators [13]. Intelligibility
means that the model is easily understandable, e.g. when it is
expressed by Boolean rules. Decision trees (DTs) are typically used
towards this aim. The comprehension of neural network models
(and of the largest part of the other ML techniques) reveals to be a
hard task (see, e.g. Section 4 of [14]).

Together with DT, we use logic learning machine (LLM), which
may show more versatility in rule generation and classification
precision. The application of other black-box ML approaches to
problem 3, such as through the neural network or support vector
machine, may be a hard task, due to the complex interrogation
required on the trained classifier (see, e.g. [15, 16]). The recent
approach of [17] is interesting in this perspective as well, being
based on a learning phase in which the system under test is
validated with respect to performance constraints. Our approach is
different as it relies on triggering validation through rules inference
from data and their calibration around safety regions of the system.

2 System under test
2.1 Metrics

The following scenario is considered. Given the platoon at a steady
state of speed and reciprocal distance of the vehicles, a braking is
applied by the leader of the platoon [7, 18]. The behaviour of the
dynamical system is investigated with respect to the following
metrics. Safety is referred to a collision between adjacent vehicles
[in the study, it is actually registered when the reciprocal distance
between vehicles achieves a lower bound (e.g. 2 m)]. For both
safety and driving comfort, string stability (SS) is also important. It
means that speed and acceleration fluctuations should be attenuated
downstream the string of vehicles. This is studied in particular in
the presence of disturbances on the leader movements. In the
literature [18, 19] are two good examples to understand how setting
the control parameters to achieve stability may be not a
straightforward process.

2.2 Dynamics

The following dynamics are considered in the study.

2.2.1 [18, 19]: The cooperative adaptive cruise control (CACC) is
considered, having the following time dynamics. Let
χi = xi − 1 − li − 1 + gi

des be the desired ith vehicle position (xi − 1 and
li − 1 being the position and length of the preceding vehicle,
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respectively, and gi
des the intervehicle desired gap), the desired

acceleration is tuned according to

χ̈i = (1 − C1)ẍi − 1 + C1ẍ0 − (2ξ − C1(ξ + ξ2 − 1))ωnϵ̇i

−(ξ + ξ2 − 1)ωnC1(vi − v0) − ωn
2,

(1)

where C1, ωn and ξ are gain, damping ratio, and bandwidth of the
controller, vi is the speed of vehicle i and ϵi = di + li − 1 + gi

des.
Stability is guaranteed under ξ ≥ 1 and C1 < 1 [19, 10] (Section
IV.E) outlines how CACC may become unstable under 60% of
packet losses.

2.2.2 [7]: We also consider the following system dynamics:

v̇i = 1
mi

(Fi − (αi + bi ⋅ vi
2)); ḋi = vi − 1 − vi, (2)

where αi is the tyre/road rolling resistance, bi is the aerodynamic
drag, i = 0,…,N − 1, and control law Fi = φ(di), i ≥ 1:

φ(d) = max {k ⋅ [50(d − 27) + (d − 27)3, − 104]} (3)

The nonlinearities of both dynamics (2) and control law (3) make
the analytical derivation of SS conditions intractable.

2.3 Information vector

The behaviour of the dynamical system is synthesised by the
following vector of features:

I = [N, ι(0), F0, m, q, p] . (4)

N + 1 being the number of vehicles in the platoon [subscript i = 0
defines the index of the leader], ι = [d, v, a] are the vectors of
reciprocal distance, speed, and acceleration of the vehicles,
respectively [ ι (0) denotes that the quantities sampled at time t = 0,
after which a braking force is applied by the leader [7]. Simulations
are set in order to manage possible transient periods and achieve a
steady state of ı before applying the braking.], m are the vectors of
weights of the vehicles, F0 is the braking force applied by the
leader, q is the vector of quality measures of the communication
medium, fixed delay and packet error rate (PER) are considered in
the study, p is the vector of tuning parameters of the control
scheme.

2.4 Example

An example may help understand [complete presentation available
in [20]]. The system of Section 2.2.2 is considered. Fig. 1 shows
speed (left) and reciprocal distance (right) of three vehicles when
braking force changes from 1000 N (no collision) to 1300 N
(collision). Fig. 2 shows the histograms of the parameters with
respect to the two classes; looking at every single variable
independently does not let understand conditions of the collision.
Scatter plots in two dimensions do not help as well. This means a
complex relation exists in the separation of the two classes and that
is where ML comes into play to derive a model of the system (e.g.
is a collision going to happen?), based on selected features (e.g.
speed and distance of the vehicles). The model studied here is
based on rules (e.g. speed v below a given threshold (<v∗), distance
d above a threshold (>d∗)). 

2.5 Behaviour prediction

The problem consists of predicting whether the dynamics may
achieve undesired behaviour of the system in the near future after
braking. The study relies on constraints that restrict the runtime
behaviour of the platoon, in order to anticipate at design time the
circumstances that can occur at runtime [4].

Fig. 3 summarises the basic steps of the approach. At design
time, the features of interest, I( ⋅ ), are selected to stimulate the
classes of the behaviour of the system. Safety analysis introduces
potential malfunctions (behavioural faults) to be taken into account
as well (an example is reported in the performance evaluation).
Training is applied to derive the prediction model f (I( ⋅ ), ⋅ ) (next
Section 3), which is interrogated at run time to infer undesired
trajectories. An automatic method for the restriction of the
behaviour at run time is thus derived to avoid that, e.g. a braking
force with specific speeds and distances will lead to a collision.
Run time application means monitoring the information vector
(e.g. current speed and distance of vehicles); f (I( ⋅ ), ⋅ ) becomes
an attractor of desired behaviours, namely, if current speed and
distance are classified for collision, proper actions are taken to
prevent danger (e.g. emergency braking). 

Before deployment at run time, the model may be further
interrogated to extract further knowledge on the system (e.g.
sensitivity analysis). As ML is simply based on the available data,
simulations or historical data collected on the real system may be
both exploited for building the dataset for training. New
monitoring data may be even exploited in a new design phase to
build a new model. The design phase is not only important for the
specification of features, classes and behavioural faults, but also for
the sampling procedure, which should collect all the classes of

Fig. 1  Example: three cars, change of braking force
 

Fig. 2  Example: histograms of parameters
 

Fig. 3  Diagram of the methodology
 

2 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



interest. Monitoring during normal operations may lead to the
collection of desired trajectories only. In both cases, ML may
operate predictions, but the former is more efficient due to the
superior knowledge registered in the dataset. The latter deals with
one class supervised learning which may introduce arbitrary
operations in the definition of anomalies.

3 Problem
The prediction function f (I( ⋅ ), ⋅ ) is now investigated by posing a
supervised learning problem. Let ω = 0 or 1 denote the under and
over threshold events related to circumstances of interest, such as
under the metrics defined in Section 2.1. Let
ℵ = {(Iκ, ωκ), κ = 1, …, ℶ} be a dataset corresponding to the
collection of events representing the platoon evolution (ω) under
different system settings (I( ⋅ )). The collection of points in ℵ is
derived by iteration over the available system under test
(platooning simulators in this case).

The classification problem consists of finding the best boundary
function f (I( ⋅ ), ⋅ ) separating the Iκ points in ℵ, according to the
two classes ω = 0 or ω = 1. Several algorithms are available to
find f (I( ⋅ ), ⋅ ) according to the supervised learning literature [21].
If the feature vector lies in (or may be projected into) a bi-
dimensional (or three-dimensional) space, e.g. through principal
component analysis [22], ℵ may be easily visualised to give a first
insight into the difficulty of the problem (i.e. how much the
available samples of the feature vector are separable with respect to
the two classes). The projection of I( ⋅ ) in dual spaces [23] helps to
tackle with the nonlinearity of f (I( ⋅ ), ⋅ ) on the original space
[24]. However, any complexity of the mathematical expression of
f (I( ⋅ ), ⋅ ) or of any pre-processing on I( ⋅ ) leads to the so-called
black-box models, which may be hardly understood to extract
further knowledge on the system. Here, we concentrate the
attention on white-box forms of f (I( ⋅ ), ⋅ ) to derive further
knowledge on the system.

4 Methodology
4.1 Logic learning machine

The derivation of f (I( ⋅ ), ⋅ ) is made by DT and LLM [the analysis
was performed through the Rulex software suite, developed and
distributed by Rulex Inc. (http://www.rulex.ai/)]. They are both
based on a set of intelligible rules of the type if (premise) then
(consequence), where (premise) is a logical product (AND, ∧) of
conditions and (consequence) provides a class assignment for the
output. In the present study, the two classes correspond to the
presence or the absence of anomalous patterns. LLM rules are
obtained through a three-step process. In the first phase
(discretisation and latticisation) each variable is transformed into a
string of binary data in a proper Boolean lattice, using the inverse
only-one code binarisation. All strings are eventually concatenated
in one unique large string per each sample. In the second phase
(shadow clustering) a set of binary values, called implicants, are
generated, which allow the identification of groups of points
associated with a specific class. [An implicant is defined as a
binary string in a Boolean lattice that uniquely determines a group
of points associated with a given class. It is straightforward to
derive from an implicant an intelligible rule having in its premise a
logical product of threshold conditions based on cut-offs obtained
during the discretisation step. The optimal placement of these cut-
offs is, therefore, an important phase to extract the highest
information gain before clustering [25].] During the third phase
(rule generation) all implicants are transformed into a collection of
simple conditions and eventually combined in a set of intelligible
rules. The interested reader on shadow clustering and algorithms
for efficient rule generation is referred to [26] and references
therein.

4.2 LLM versus DT

When building the model, DT adopts a divide and conquer
approach that subsequently adds conditions (nodes) to the tree

based on smaller and smaller subsets of training data. While this
method can lower the overall computational time, it also has the
side effect of reducing the information available when selecting
conditions after the first one. As a consequence, the rules in the
resulting models are disjoint, i.e. there is a strong dependency
among them. For this reason, DT may experience over sensitivity
to highly relevant attributes, may depend too much on the training
set and may be corrupted by irrelevant attributes and noise (see,
e.g. Chapter 9 of [27]). In contrast, in LLM, all the implicants are
generated through shadow clustering by looking at the whole
training set; in this way, resulting rules can overlap and represent
different relevant aspects of the underlying phenomenon. The
higher precision of LLM derives from the mapping of data on
implicants, which reveals to be a smoother operation than the hard
separation provided by DT while going deeply in the tree
construction.

4.3 Feature ranking

Having a set of n rules r1, …, rn, rule ri has covering C(ri), i.e. how
many points are covered by ri (typically expressed for each class
separately), and error E(ri), i.e. how many points are misclassified
by that rule. Rule ri has mi conditions ci1, …, cmi1. Rule ri has output
y^i. The weight of each condition ci j, denoted by wi j is given by the
increase of error when removing that condition. The same principle
is applied for feature ranking and rule scoring.

To obtain a measure of the importance of the features included
in the rules and rank these features according to this value, we
utilised a measure called relevance R(c) of a condition c. Consider
the rule r′ obtained by removing that condition from r. Since the
premise part of r′ is less stringent, we obtain that E(r′) ≥ E(r) so
that the quantity R(c) = (E(r′) − (r))C(r) can be used as a measure
of relevance for c. Let x be an input vector, the relevance for the jth
feature component is

Rv(xj) = 1 − ∏
k

(1 − R(ckh)) (5)

the product being computed on the rules rk that include a condition
ckh on the variable xj. Feature ranking consists of ordering the
features with respect to that measure. It is typically more robust
than statistical tests (e.g. through entropy, Pearson, Spearman or
Kendall tau metrics) because it derives from a trained model and
less computationally expensive than ranking inside the training
process itself (as with support vector machine [28]). Feature
ranking may help knowledge extraction when the user tries to
interact with the rules (which features should be chosen for further
tuning).

4.4 Safety regions

The availability of rules allows to study the sensitivity to the
problem (Section 5.1 of the results), as well as calibrating false
negatives through information provided by feature ranking (Section
5.2). However, this may be not sufficient to discriminate between
the two classes with (statistical) zero error. The final goal of the
validation process is to identify the largest subset of parameters
with no false negatives (i.e. prediction of no collision, but a
collision in reality). To do this, three methods are studied here.

(1) First, data visualisation of the 2 (or 3) most important features
after ranking (5) may be applied to manually inspect the most
relevant regions for safety.
(2) Secondly, the LLM is trained with zero error when developing
rules. It is able to identify safe points with a safe margin because
the cut-offs of the discretisation step are assigned by taking as a
reference a boundary placed in the middle among the classes. The
rules for the safe class with the largest covering are then joined
together under logical OR (∨) to build the predictor. This approach
builds a strict boundary around safe points that could be even too
conservative, especially if only the first rule with the highest
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covering is used, but with the necessary guarantee to limit false
negatives.
(3) A more refined procedure is elaborated as well. Since trained
classifiers with zero error have the risk to polarise the model on
training data, thus precluding the capability for generalisation to
new (test) datasets, we still train the classifiers while keeping a
non-zero margin for error (e.g. 5%), but we progressively extract
unsafe points from the original dataset until only safe points are
obtained. The mechanism is shown in Fig. 4. The principle of κ-
fold cross-validation has been taken as a reference. [It consists of
subdividing the total dataset into κ parts of equal number and, at
each step, the κth part of the dataset comes to be the validation
dataset, while the remaining part constitutes the training dataset.]
In the beginning, ℵ1κ is already included in ℵκ at step 1. However,
the presence of duplicated data is ignored by the training algorithm.
Step 2 presents rules in the R0κ subset, ordered by covering. The
subsequent step selects the first rules having a difference in
covering between 5% and compares them as follows. If they
express identical features, the most stringent thresholds are selected
for the feature (e.g. if two rules state v(0) < 30 ∧ d(0) > 10 and
v(0) < 29 ∧ d(0) > 15, respectively, the output becomes
v(0) < 29 ∧ d(0) > 15). This elaboration gives in output the R0κ′
subset and may be easily done by manual inspection on R0κ. The
procedure is repeated because the training error precludes the
extraction of safety points in one shot of steps 1–4. The final step
formulates a rule from the κ available R0κ′ . The most stringent
condition is taken on the same feature from different rules. If the
rules include different features, they are joined together (in logical
∧), e.g. if two rules state v(0) < 40 and d(0) > 25, the output is
v(0) < 40 ∧ d(0) > 25.

4.4.1 Sensitivity analysis: The three methods lead to the
identification of the safe class by a small set of rules or even a

single rule. The sensitivity analysis on the error achieved by
violating or by restricting the rules is straightforward. Let δ be the
variation applied to a threshold in a condition of a rule,
d(0) > (d∗ + δ), the proportion of false negatives ϵ(δ) may be
computed according to the decrease or increase of δ, thus
quantifying the distance of the region from unacceptable situations,
such as ϵ ≥ 1%; the smaller the ∂ϵ(δ)/∂δ is, the more stable is the
region. Feature ranking may help in this respect as it suggests the
most sensitive features to the problem and to apply sensitivity
analysis on their thresholds.

The second approach (just selecting the safety rules with the
highest covering) may be easily automated due to its intrinsic
simplicity. The third one should be more precise, but not so easy to
deploy, in virtue of the manual calibration of rules. It is finally
worth noting that the third approach applies to rules, independently
of the used classifiers.

5 Performance evaluation
One of the most important issues of intelligible analytics is
interaction with the user. Interaction means let the expert
understand the rules and (i) modify them or (ii) come up with new
rules in order to extract further knowledge. Section 5.2 is an
example of (i) and Section 5.1 of (ii). [Code and datasets of
performance evaluation available in [20].]

5.1 String stability

A discrete time simulator of (2) has been developed, by also
introducing a delay, del in [ms] in a hop-by-hop information
exchange between the vehicles. This means speed and distance of
vehicle i are known at vehicle i + 1 with delay. Since equations are
updated accordingly, delayed reactions are propagated downstream
the platoon. The following setting is applied: N = 2 (three cars in
the platoon), αi = 0, bi = 0.43, mi = 1050 kg. Let t be the sampling
index over discrete time over an observation horizon having
duration T = 300 s. The braking force applied by the leader
contains a disturbance [18]: F0 = − 500 ⋅ sin(0.2t) Newton (N).
Delay is considered fixed, for now, as the following assumption
holds: time-varying delays are enclosed within a unique upper
bound [18]. Parameters are set as follows [from now on, d(0) and
v(0) are presented without subscript i as they are assumed equal for
all vehicles] (similarly to [7]):

del ∈ [1, 15] ms, d(0) ∈ [25, 40] m, v(0) ∈ [90, 110]
km/h .

The performance metric to measure SS is

J = ∑
t

v2(t) − v0(t) (6)

A family of control laws of the type as in (3) are also introduced
with k ∈ [1, 20]. Extensive simulations, not reported here for the
sake of synthesis, corroborate that J < 1 values are associated with
stability. An example is presented in Fig. 5. The dataset ℵ is built
by simulating the system under the chosen conditions and setting ω
in correspondence of registered stable and unstable behaviours of
the platoon: ω  = {‘0’ if J < 1, ‘1’ otherwise }. ℶ = 2000 samples
of system conditions are derived with a simulation time of <10′
over an IntelCore i7 @2.4 GHz. The LLM is then applied to map
the variables into the ω output. We want to find the relation among
minimum distance, minimum braking force (i.e. minimum k) and
maximum delay, still achieving stability. 

First insight into the problem. To understand how tricky the
problem is, we start from data visualisation. Fig. 6 shows the
scatter plots of the k − del and k − d(0) couples, in which complex
boundaries among the variables may be intuitively inferred. The
proportion of unsafe points with respect to the vertical axis of the
right side of Fig. 6 (d(0)) suggests that information with d(0) ≤ 28
should be filtered out, d(0) = 28 lying on the border of stable/
unstable classes. Univariate histograms of d(0) (not reported here)

Fig. 4  Procedure for safety rule extraction
 

Fig. 5  Sinusoidal decrease of leader. d(0) = 40 m; v(0) = 110km/h.
Vehicles speed. k = 1. Large oscillations: J = 2.744
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confirm the analysis. We then apply the LLM over the subset of
data corresponding to d(0) ∈ [dmin, 40]; dmin(0) = 27 is chosen to
validate intuition inferred from the scatter plot. DT is disregarded,
for now. The rules obtained are reported below. For the sake of
synthesis, only the first 5 rules with the highest covering for the
stable class are reported. We recall here that the covering metric, C,
measures how many points of a class are synthesised by a rule (e.g.
for rule 1: 91% of ‘stable’ points satisfy the rule; the error, E,
measures how many points are misclassified by that rule on the
other classes (e.g. for rule 1: 4% of ‘unstable’ points are
misclassified, i.e. assigned to ‘stable’ class). 

One may identify del = 10 as the maximum delay with
minimum k = 9 as stability condition over the entire range
d(0) ∈ [30, 40]. The reasoning is as follows. k = 9 being a safe
margin over k = 8.4 of the last rule, del = 10 being registered by
the first three rules with higher covering and as a compromise
between eight and 13 of the last two rules, d(0) ≥ 30 as suggested
by the last rule. This was validated over another test set of 2000
points (only stable class has been registered in the test set). This
could conclude the analysis if the analyst wants to simplify the
procedure. However, a more insightful view of the border of safe
and unsafe points may be investigated as well.

Refining the analysis. The situation with d(0) ∈ [25, 30] is
much more complicated: only instability seems to arise over that
subset of data. Is there any setting of the other parameters to still
achieve stability? The analysis on the new subset:
k ≥ 9, d(0) ∈ [25, 30], over a new training set with 2000 points,
leads to an unbalanced proportion of registered unstable outputs,
while a balanced proportion between the two classes appears in the
previous analysis. Moreover, the d(0) ≤ 27 rule has been obtained
by the LLM in 69% of the unstable cases. These two facts give a
clear indication that the d(0) ∈ [25, 30] interval should be avoided
or restricted even more: d(0) ∈ [28, 30]. By further restricting the
analysis on that interval, several rules (similar to the ones already
reported) are found with a covering <40%. In virtue of such
reduced covering, the most restricting thresholds from the rules are
extracted, del = 2, k = 11, and successfully validated over a new
test set of 2000 points. To summarise, SS conditions are
del = 10, k = 9 with d(0) ∈ [30, 40] and del = 2, k = 11 with
d(0) ∈ [28, 30], independently to v(0) ∈ [90, 110].

if (del ≤ 10) ∧ (d(0) > 28) ∧ (k > 7.845) then stable C = 91%, E
= 4%;

if (del ≤ 10) ∧ (d(0) > 27) ∧ (k > 8.145) then stable C = 88%, E
= 3%;

if (del ≤ 10) ∧ (d(0) > 28) ∧ (k > 7.575) then stable C = 88%, E
= 2%;

if (del ≤ 8) ∧ (d(0) > 27) ∧ (k > 7.255) then stable C = 73%, E
= 4%;

if (del ≤ 13) ∧ (d(0) > 30) ∧ (k ∈ (8.415, 17.69]) then stable C
= 63%, E = 4% .

Bounded versus average delay. Safety critical systems require
considering exceptional situations. The impact is relevant if the
hypothesis above about fixed delay does not hold anymore. To
show this, we consider the case when delay becomes an average.
Values of delay in the range [1, 15] ms are still considered, but they
now constitute the mean of a Gaussian distribution with variance
0.09 [7]. By repeating the analysis [In simulations, a collection of
100 traces are collected to infer whether the platoon is stable or
not, for each allocation of the other parameters (d(0), v(0), k, whose
ranges are left unchanged). Instability is registered if at least one
trace collects a sample with J ≥ 1 (stability otherwise).], the
following final SS condition is found:
del = 4, v(0) < 95, d(0) > 34, k > 11. The restriction on the
behaviour of the system is very relevant from bounded to average
delay.

5.2 Safety

The Plexe simulator [10, 18] is used to register ℶ = 15 × 103

samples of the model presented in Section 2.2.1 [(7)–(12) of [29]
are implemented in the simulator as stated in [18].], under the
following ranges:

N ∈ [3, 8], F0 ∈ [ − 8, − 1] × 103 N [from now on, the notation
( × 103) is omitted when referring to thresholds applied to F0.],
PER ∈ [0.2, 0.5], d(0) ∈ [4, 9] m, v(0) ∈ [10, 90] km/h.

The control gain of (1) is set to C1 = 0 [19] (see Section 5.5). A
collision is registered when two vehicles are near below 2 m. The
performance of the two classifiers is presented with respect to the
following metrics: false negative rate (FNR), false positive rate
(FPR), size of safety regions and Fscore. The three methods
defined in Section 4.4 are then applied to infer safety regions. The
dataset is divided into 3 × 103 points for training (at design time as
to Fig. 3) and 12 × 103 for the test (at run time). Rules are derived
on the training set; performance evaluation derived from validation
of the test set. Such a larger test set stresses the validation process.
Feature ranking defines the following decreasing order of
importance of the features: PER, N, v(0), d(0), F0. Fig. 7 highlights
the complex profile of the two classes; the first two features of
feature ranking are used. 

By inspecting Fig. 7, it is intuitive to identify the following
safety region (first method of Section 4.4): (N ≤ 6) ∧ (PER < 0.26)
or by a more accurate inspection:

manual calibration:

if ((N = 6) ∧ (PER < 0.253)) then safe;
if ((N = 5) ∧ (PER < 0.258)) then safe;
if ((N = 4) ∧ (PER < 0.325)) then safe;
if ((N = 3) ∧ (PER < 0.42)) then safe .

LLM and DT are then tuned according to the second and third
method outlined in Section 4.4:

LLM: (see equation below) DT:

if (v(0) ≤ 28) then safe C = 59%, E = 0% .

The quantities δPER and δN in LLM are related to sensitivity
analysis (Section 4.4.1) and are ignored, for now (i.e. they are set
to 1). Two iterations of the inner steps of the rule extraction
procedure (Fig. 4) are needed to derive the DT rule; at the first
iteration, the rule found after the first training (v(0) ≤ 42) still
leaves 1% of unsafe points. The most stringent condition on v(0) is
chosen after κ = 5 cross validation. On the other hand, no further
iterations have been applied to LLM as it identifies only safe points
at the subsequent iteration. The original first four LLM rules
included F0, but, being the last ranked feature according to (5), it

Fig. 6  Scatter plots of k − del and k − d(0)
 

Fig. 7  Investigated dataset with respect to scattering plot of N-PER
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was discarded to simplify the model. This introduces a very small
increase of the prediction error as expected by the feature ranking.

Fig. 8 presents how many points are safe in different extractions
of 103 subsets with different sizes from 8% to 50% of the total
points available for test (12 × 103); 11 × 103 trials in total. LLM is
considered with respect to the five rules in logical OR above (∨)
and to the first one with highest covering. The LLM follows the
boundary in Fig. 7 better than the other methods, thus extracting a
higher number of safe points. FNR is always 0% for DT and very
close to 0% for the other techniques. The averages of FNR over the
trials are 0.0, 0.05, 0.22 and 0.04% for DT, LLM single rule, LLM
5 rules, and manual calibration, respectively. 99 percentiles are:
0.0, 0.27, 0.73 and 0.22%. Averages of FPR are 7.4, 6.8, 3.8 and
7.8%. The F-score, F, is also considered as performance
comparison, defined as

F = 2 ⋅ TP
2 ⋅ TP + FN + FP (7)

where TP, FN, and FP are the number of true positive, false
negative, and false positive alarms, respectively. Values of F close

to 1 denote better discriminant capacity of the classifier. It is shown
in Fig. 9. LLM 5 rules achieve the best performance in virtue of the
more complex profile of the rules. Decreasing values of F are
related to lower sizes of extracted subsets in which less TP are
present and FPs become sensibly higher. 

5.3 Discussion

The analysis gives a clear indication about the number of safe
points in the chosen ranges of the parameters: up to 60% if 0.22%
of FNR may be accepted, <30% if one wants to identify 0% of
FNR. The gap between the safety regions under 0.22 and 0% of
FNR is considerable and denotes the difficulty of the problem. The
corresponding DT rule for the latter is simple, v(0) ≤ 28 km/h, but
impractical as it leads to platoons working at low speed. LLM 5
rules include the DT rule (last rule of LLM) but also identifies safe
platoons with higher speeds. For example, the first LLM rule
selects safe points independently to v(0) ∈ [10, 90] km/h and the
following three rules accept v(0) > 28 km/h.

5.4 Sensitivity analysis

The errors of LLM (0.22% and 0.05%) are due to the size of the
training set that is significantly smaller than the one of the test set
(3 × 103 versus 12 × 103). To further reduce them, one may perform
the sensitivity analysis outlined in Section 4.4.1. Feature ranking
suggests acting on PER and N. The quantities δPER and δN are
calibrated on the test set to achieve no error while keeping the
largest number of safe points. The optimal setting is δN = 6/7 (i.e.
one car is eliminated from the platoon to become safe), δPER = 0.97
with LLM single rule and δPER = 0.86 with LLM 5 rules and is
validated on an additional test set of 5 × 103 points. In the new test
set, the FNRs of the LLM single rule and five rules are 0.038 and
0.18%, respectively, and the new δ setting leads to zero FNR.
Fig. 10 shows the inherent reduction of safe points with respect to
Fig. 8. Despite the reduction, LLM 5 rules preserve a more
complex profile of safety regions with zero FNR. Under this
methodology, one may easily interact with the rules by calibrating
error versus a number of safe points (i.e. closest δ to 1 with no
error). More complex mathematical functions, e.g. deriving from
the neural network, can be hardly applied with similar simplicity. 

5.5 Behavioural fault

Combining data driven approaches and physics of failure using ML
is another important issue [1, 17]. To this aim, we take [17] as a
reference. It injects behavioural faults in the platooning system, by
over-simplifying the structure of the control parameters. By
following the same idea, we have considered so far the worst
allocation of C1 in (1) of the CACC scheme when it is set to 0. This
means only precedent vehicle’ information is delivered to each
vehicle [19]. C1 > 0 leads to better performance as it deals with the
broadcast of leader behaviour to all components of the platoon.
This is investigated in detail in [19]. By following the same line of
Table VII of [19], we investigate the impact of increasing C1 from
0 to 0.9, by repeating the same DT and LLM analysis on new
simulation data, in which all parameters are left unchanged, except
C1 variable. The resulting rules are not reported for the sake of
synthesis, but the following qualitative considerations hold true.
The improvement is evident as the conditions thresholds are less
strict as soon as C1 increases (e.g. the DT finds increasing
acceptable speeds from 28 to 76 km/h). The rules found with

if ((PER ≤ 0.325 ⋅ δPER) ∧ (N ≤ 7 ⋅ δN) ∧ (d(0) > 4.2385)) (C = 29.5%, E = 0%)
∨ (if (d(0) > 4.69) ∧ (v(0) ≤ 37))) (C = 26%, E = 0%)
∨ (if (PER ≤ 0.445 ⋅ δPER) ∧ (v(0) ≤ 41))) (C = 24.5%, E = 0%)
∨ (if (PER ≤ 0.405 ⋅ δPER) ∧ (d(0) > 5.5055) ∧ (v(0) ≤ 53))) (C = 25.1%, E = 0%)
∨ (if (v(0) ≤ 28))) (C = 24.3%, E = 0%)
then safe

Fig. 8  Size of safety regions and FNR on the test set (δ = 1)
 

Fig. 9  F-score on the test set
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C1 = 0 are thus conservative with respect to the worst condition in
the communication exchange.

5.6 802.11p

Additional simulations deal with a realistic scenario as in [18]. The
channel model follows Nakagami-3 fading (free-space path loss)
with network device IEEE 802.11p with beacon frequency of 10 
Hz. All system parameters are the same as above, C1 = 0, except
the channel model under PER, which is replaced by 802.11p.
15 × 103 samples are generated, 1/4 of which is used for training,
the rest for the test as above. Additional human-driven vehicles are
present in two additional separate lanes to generate wireless
interferences as in [18]. The performance impact is considerable as
the real device introduces a PER <10% (an average measure of
PER along simulation traces), thus leading to similar rules with less
restrictive thresholds, such as v(0) ≥ 35 km/h with DT.
Qualitatively, the following considerations hold true for LLM. An
additional car is accepted in the platoon by the rule with the highest
covering and the last rule (previously related to v(0) and equal to
the DT one), is now related to d(0) and accepts a larger safe
distance over 6 m. This leads to sensibly larger safety regions,
whose average coverage is 30.9% with DT, 37.4% with LLM one
rule and 66% with LLM 5 rules, with corresponding average
FNRs: 0.0, 0.08, and 0.20%, respectively.

6 Conclusion and future work
The study shows how intelligible analytics helps derive synthetic
performance modelling of VP. Rules extraction through supervised
learning drives the definition of safety regions of system
parameters. Results obtained through different simulators and
performance metrics corroborate the reliability of the approach.

Future work relies on the theoretical investigation of the profile
placed on the border of a predefined threshold of FNs. On-going
investigation deals also with simulation scenario extensions,
including, but not limited to, more complex behavioural faults,
other cases of realistic communication, control parameters setting
[6], vehicle actuators impact [10], security [30] and comparison
with black-box approaches in ML.
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