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Vehicle
platooning

https://www.youtube.com/watch?v=X7vziDnNXEY&t=73s
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Vehicle platooning: the problem



Platooning: problem

Leading vehicle (#0) applies a braking force

Parameters: # vehicles, initial distance, initial speed, force, weight,
communication delay (control law assumed fixed)

Can we predict collision?

Wireless ommunication
link sends vehicle 0
driver’s action and

distance information

Rear sensor of
vehicle r-1
feeds distance

to vehicle 2 Communication .
- links Information to
-~ ~ vehicle r-1
’ -—-
’ S e =~
; \ f Vehicle r-1
"ur'ehlcle 1
Sensc}r
Vehicle 2 4
I \ ~ e - Information
Front sensor of St - feeding
vehicle 1

feeds distance
Information to
vehicle 1

L. Xu, L. Y. Wang, G. Yin and H. Zhang, "Communication Information Structures and Contents for Enhanced Safety
of Highway Vehicle Platoons," in IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4206-4220, Nov. 5
2014. doi: 10.1109/TVT.2014.2311384.



Platooning: example
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Performance prediction: state of the art



Performance prediction: state of the art

A lot of control algorithms
Mathematical modeling for stability of the string of vehicles
Brute force simulation analysis

Moreover in this scenario we have re-tuned the controller to
ensure a constant and very small (5 m) bumper to bumper
distance and not a constant time headway.
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Fig. 11. (a) Stability chart in the (y;,o)-plane for the ring configuration using N = 33 vehicles and the same parameters as in Fig. 2(e). (b and c) Stability
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Platooning: model

Model based on differential equations to generate sample paths of
the system

(g = %D(Fo — (ag + bov))
v = ﬂ% (Fh7 — (a1 + byv 1))

) .1'..'2 = 7o (Fg — (ag + bzi ))
dy = wvo—v1

\ {'jg — U1 — Usa,

L. Xu, L. Y. Wang, G. Yin and H. Zhang, "Communication Information Structures and Contents for Enhanced Safety
of Highway Vehicle Platoons," in IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4206-4220, Nov. ,
2014. doi: 10.1109/TVT.2014.2311384.



Platooning: model

Model based on differential equations to generate sample paths of
the system

(g = %D(Fo — (ag + bov))
vy = ﬂi (F1 — (a1 + byv 1))
) .1'..'2 = 7o (Fg — (ag + Z}ZI ))
dy = wvo—v1
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L. Xu, L. Y. Wang, G. Yin and H. Zhang, "Communication Information Structures and Contents for Enhanced Safety
of Highway Vehicle Platoons," in IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4206-4220, Nov. 13
2014. doi: 10.1109/TVT.2014.2311384.



Platooning: model

Model based on differential equations to generate sample paths of
the system

(Vg = %(Fo — (ag + bovg))
v = %(Fl (a1 + biv 1))

) .1'..'2 = 7o L (Fy — (as + bav? 3))
{'%1 = Up — U1

[ dy = 1 — U2

*Each vehicle communicates with the previous one only (no multiple coverage of
vehicles by the communication channel, for now).

*Each vehicle sends current position and speed.

*Braking force applied in each vehicle on the basis of received information (speed
not used by control law, for now).
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Platooning: model

Random sampling of system conditions as follows: ...

((Uvp = %(Fo — (ag + bovd))
v = %(Fl (a1 + biv 1))

! 19 = — L (Fy — (as + bov? 3))
{ll = Tp— U1

\ fjg — U1 — U2

... # vehicles = 3, initial distance in [15, 55] m, initial speed in [10, 90] km/h,
force in [100, 3000] N, vehicle weight in [500, 2500] Kg, communication delay
in [10, 200] ms (fixed*, for now).

* Probabilistic models applicable (->runs within the main loop to cope with
randomness).




Platooning: database of performance

At the end of each run (corresponding to 1 sample of system
parameters) we register if there was a collision or not.
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Platooning: database of performance

12000 extractions of system parameters (=rows in the db).
6 hours of simulation on Intel 2.4Ghz i7 processor.
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Machine Learning
2"d step: knowledge extraction



Machine Learning
2"d step: knowledge extraction
Is the problem difficult?
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s this problem difficult?

((Uvp = %(Fo — (ag + bovd))
= ﬂ% (F1 — ((!1—|—Z}1I%))

) .1'..'2 = 7o (Fg — (ag + Z}zi ))
di = wvo—11

\ fjg — U1 — U2

# vehicles = 3,

initial distance in [15, 55] m,

initial speed in [10, 90] km/h,

force in [100, 3000] N,

vehicle weight in [500, 2500] Kg,
communication delay in [10, 200] ms .
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Count

Count

Univariate analysis by histograms
not easy to understand!
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Bivariate analysis by scatter plots
not easy to understand!
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Does a clear boundary between collision and no collision exist in
each bi-dimensional space of the features?
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Machine Learning
2"d step: knowledge extraction
Logic Learning Machine in the Rulex platform:
If-then rules with accuracy

24



Data

Neural network models
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Rulex platform: intelligible rules

char *ApplyRules(int "braking force', int "weight',
= int 'comm. delay', int "imit. distance', int 'mit. speed') {

if (("init. distance’ <= 24) &&
('init. speed’ > 30)) return "collision";

if (("braking force' = 500) & &
(‘init. speed’ <= 30)) return "no collision";

if (("braking force' <= 1345) &&
('init. distance' <= 33) & & (‘init. speed' >35)) return "collision";

[--]

A model made by boolean rules was built in Rulex by reading the
database and applying the Logic Learning Machine algorithm (2’ of
computation, plug&play without tuning the algorithm)
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Confusion matrix

Forecast
0 1 Total

0 5024 {34.55:}3@11 (15.3496208930... 5935 (49.458333333...
Output

1 577 (9.5136026381%4_5488 (90.4863973... D065 (50.541666666...

Total 15601 (46.675000000... | 6399 (53.325000000.. 12000 (100%)
Forecast
0 1
84% True Negatives

0 (no collision correctly predicted).

Output

90% True Positives (collisions
correctly predicted).
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Confusion matrix

Forecast
0 1 Total

0 5024 (84.6503791... 911 (15.3496208930... 5935 (49.458333333...
Output

1 577 (9.5136026381%) %488 (90.4863973... 6065 (50.541666666...

Total 5601 (46.675000000... | 6399 (53.325000000.. 12000 (100%)
Forecast
0 1
9% of false negatives (FNs)

0 (collisions not correctly predicted)

Output

A further elaboration on how to
characterize FNs is needed
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Feature ranking

Rule r if <premise> then <consequence>

N Disease Condition 1 Condition 2 Covering
(Output)

1 No Age <65 Marker > 10.60 units 80%

2 No Male Gender Marker < 29.40 units 30%
Imr-)or-tance. of a conc.zlltlon C: error AE(c) = E(r)-E(r)
variation with and without c
Relevance: error variation and R(c) = AE(c)C(r)
covering C(r)

Relevance Rv of feature x; Ry(xj) =1- 1_[(1 — R(cy))
k

Rule of thumb: Rv<5%: marginal contribution; C(r)<2%: outliers



Feature ranking

Attribute relevances
for collision=1

init. speed

init. distance

comm. delay

braking force

weight

Increasing initial speed has the highest relevance on collisions.
The opposite holds true for the initial distance.



Confusion matrixes of 2 models:
with and without delay

Forecast Forecast
0 1 0 1 Total

0 5024 (84.6503791... 911 (15.3496202930... 0 5021 (84.5998315... 914 (15.4001634920... 5935 (49.458333333...
Output Output

1 577 (9.5136026381%) 5488 (90.4863973... 1 262 (14.2126937955... 5203 (85.7873042... 065 (50.541666666..,

Total 5564]1 (46.675000000... 6399 (53.325000000... Total 5833 (49.025000000... 6117 (50.975000000... 12000 (100%)
Forecast Forecast
0 1 0 1

0 0

Output Output
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Confusion matrixes of 2 models:
with and without delay

Forecast Forecast
0 1 0 1 Total

0 5024 (84.6503791... 911 (15.3496202930... 0 5021 (84.5998315... 914 (15.4001634920... 5935 (49.458333333...
Output Output

1 577 (9.5136026381%) 5488 (90.4863973... 1 262 (14.2126937955... 5203 (85.7873042... 065 (50.541666666..,

Total 5564]1 (46.675000000... 6399 (53.325000000... Total 5833 (49.025000000... 6117 (50.975000000... 12000 (100%)
Forecast Forecast
0 1 0 1

0 0
Output Output

1 1

Information on delay is not crucial!
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init. speed -

init. distance |-

comm. delay |-

braking force |

weight |-

Feature ranking

Attribute relevances
for collision=1

Decreasing braking force -> more collisions, why?



Rationale of decreasing braking force ->
more collisions
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FNR=0%



Procedure for safety rule extraction
FNR=0%

LLM with 0% of error in rule generation.
DT...
Refinement with cross validation as follows.

Data set N divided into k portions X,..
N1, includes only unsafe points from N,

repeat Kk times
repeat
1. Train(X, + N¢,)
2. Ry, subset of ‘safe’ rules
3. Manual i,nspection Ry, — R(')K
4. Apply(Roy, 8y)
until X, contains safe points only

Choose most stringent conditions from Ré,c.




System setting and manual calibration

plexe.car2x.org simulator
Simulated scenario

N c [3.8], Fy € [-8.—1]-10° N, PER € [0.2,0.5].
) € [4,9] m, v(0) € [10,90] Km/h.


http://www.plexe.car2x.org/
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System setting and manual calibration

plexe.car2x.org simulator

Simulated scenario

N € [3.8], Fy € [-8,—1] - 103 N, PER € [0.2,0.5],
d(0) € [4.9] m, v(0) € [10,90] Km/h.

Dataset with respect to scatter plot of /-P£72

collision

manual calibration:
if (N =6) A (PER < 0.253)) then safe;
if (N =5) A (PER < 0.258)) then safe;
o (N =4)A(PER < 0.325)) then safe;

if (N =3)A(PER < 0.42)) then safe;
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Intelligible analytics: Logic Learning
Machine (LLM) & Decision Tree (DT)

Objective 1: safety rules with 0% of false negative rate (FNR)
Objective 2: finding largest ranges of system parameters

LLM:
if ((PER < 0.325) A (N < 7)A (Fop =2 —8) A (d(0) > 4.2385)) (C =
30%, E = 0%)
v (if (Fp > —8) A (d(0) > 4.69) A (v(0) < 37))) (C =27%, FE = 0%)

v (if (Fo > —7) A (PER < 0.445) A (v(0) < 41))) (C = 26%, E = 0%)
Vv (if (Fo > —8)A(PER < 0.405) A (d(0) > 5.5055) A (v(0) < 53))) (C =
26%, E = 0%)

v (if (v(0) < 28))) (C = 25%, E = 0%)

then safe

DT:

if (v(0) < 28) then safe C' = 59%, E = 0%; >



Results: Size of safety regions and FNR

Evidence: Up to 60% of points are safe with 0.2% FNR.
Open issues: optimal solution? Comparison with black-box.
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Black-box approaches?



Support Vector Data Description (SVDD)

arg min(R* +CY¢)).

___.-"'f_--_ __-_---""-.,_
QIR <R £ * .
I|Xi—al|" <R°+¢&,&=0
X; . * o
ﬁ\,f"' "

/’ %‘ |
1 .
support | !

'i.fm:tcnrﬁ."*un.,_,‘L «* s @

[ ]
® pormal data

A hypersphere surrounding the normal dataset.

D.M.J. Tax,R.P.W.Duin,Support vector data description, Mach.Learn.54(1) (2004)45-66.
D.M.J. Tax,R.P.W.Duin,Support vector domain description,Pattern Recoginit. Lett. 20(11-13)(1999)1191-1199.

Xuemei Ding, Yuhua Li, Ammar Belatreche, Liam P. Maguire, An experimental evaluation of novelty detection methods, Neurocomputing, Volume
135, 5 July 2014, Pages 313-327, ISSN 0925-2312.
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Conclusions

® Machine learning was able to cope with a non-
trivial example:

o Overlapping collision/no collision on univariate
and bivariate analysis

o Decreasing braking force -> more collisions



Conclusions and open issues

® \What we have: intelligible algorithms for data analytics
of platooning.

® \What we are doing:

o refinement of the models
= a3 model of false negatives?
= understanding the impact of the features
= discrete event simulation (driven by diff. egs.) for delay models
(e.g., delay=f(distance))

o Interaction with pilot V2I

® Future work: rule-based streaming analytics.



Cybersecurity



Packet falsification

Packet falsification consists in manipulation of the acceleration field of IEEE 802.11p, i.e.,
sending unreal indications to follower vehicle (whenever vehicle decelerates, the malicious
packet is as if vehicle accelerates and vice versa).

S. Ucar, S. C. Ergen, and O. Ozkasap, “Security vulnerabilities of ieee 802.11p and visible light communication
based platoon,” in 2016 IEEE Vehicular Networking Conference (VNC), Dec 2016, pp. 1-4.



Packet falsification

Packet falsification consists in manipulation of the acceleration field of IEEE 802.11p, i.e.,
sending unreal indications to follower vehicle (whenever vehicle decelerates, the malicious
packet is as if vehicle accelerates and vice versa).
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cars = 8 9 T T T T T T T T T
80 ' - ' : ' distance c0-c1
I. m— cpeed car(c)0 - distance c1-c2 |
sl W speed ¢l | , distance c2-c3
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\ speed c3 I A distance c4-cb
ol \ == mcpeed cd | / distance c5-c6
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Fig. 1. Speed evolution with attack (at time 2 s). Fig. 2. Distance evolution with attack (at time 2 s).

Attack at t’=2 s. Duration of the attack D=3 s. 4




Approaching the problem

We approach the problem through the above methodology.

Isys =[N, z(0),m,F, D] F = [Fy,bp] F = Fy-sin(bp -t) x(0) = [d(0),v(0)]

N



Intuition

Let’s have a look at integrals of differences of speeds and distances

Isys = [N.z(0).m,F,D| F = [Fy,bp] F = Fy-sin(bp - t)

cars = 8
2.5 T T T T T T T
r ldspeed
| Idspeed2
ol I Idspeeds
] . W dspeedd
] ' ldspeed5
3 [l Idspeeds
8 1.5} I ldspead?
5 I
1]
= |
o l attack
g 1r |
g |1
E
I l.r';.
os5r 1 A 7N\

time [s]

Fig. 3. Integrals of difference of speeds with attack (at time 2 s).

x(0) = [d(0),v(0)]
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New features

In formulas...

Isys =[N, z(0),m,F, D] F = [Fy,bp] F = Fy-sin(bp -t) x(0) = [d(0),v(0)]

T
bo, = / [vi11(t) —vi(t)] dt, 2 =0,....N — 1
Jo

T
Ld, = / |diio(t) — djaiq(t) dt|,2=10,....N — 2
70 T =t + 1.1 Dyoaa
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Temporal dynamics into ML

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

Isys = [N.z(0).m,F,D| F =[Fy,bp] F = Fy-sin(bp-t) x(0) = [d(0),v(0)]

T
e’-;_:!i — / |f'-3_|_:|_ (f-) - f‘g(f_)| {"f-t. fl — “. s _L'Z\'T - _]_
/0

T
Ld; = / |i."fr._!'__|_2( ) — (314_1 {‘H| 1 =0,....N — 2
70 T =t +1.1- Do

I=[I,s1, e

@)
)5

«
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Temporal dynamics into ML

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

Isys = [N.z(0).m,F,D| F =[Fy,bp] F = Fy-sin(bp-t) x(0) = [d(0),v(0)]

T
e’-u?; = / |f'i—|—1 (?L) — -41i(?{)| {,H i=0. .. ig\l,— 1
<40

T
ld; = / |i.‘_'!r.3'__|_2(f-) — (Ei+1(f7) {‘H|i‘ =0,....N —2
70 T =t +1.1- Do

I=[I,s1,

@)
)5

prediction function f(I(-),-)

N={(I",w"),x =1,..., K} dataset .



Temporal dynamics into ML

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

Isys =[N, z(0),m,F, D] F = [Fy,bp] F = Fy-sin(bp -t) x(0) = [d(0),v(0)]

T
bog = / vip1(t) —vi(t)] dt,i=0,...,N —1
J 0

T
by = / diyo(t) —djeq(t) dt]|,i=0,.... N — 2
h r=1t+11- D;“L-Ia:r

I =[I.ys.1,]

boundary function f(I(-).-) separating the I" points in X,
according to the two classes defined by w.
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Temporal dynamics into ML: results

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

Fo € [~Formaz. —10] N, Forrae = 3358
brp € [0.1,0.7]

d(0) € [5,10] m, v(0) € [50, 150] Km/h
D € (0.1, Dyvaz] 8. DMaz =5
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Temporal dynamics into ML: results

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

DT:
if ((tw, > 15) A (D = 1.7)) then collision (C=70%)
if ((11 < ¢y, < 15) A (d(0) < 6)) then collision (C=14%)
if ((twy = 15) A (D < 1.7) A (d(0) < 8)) then collision (C=8%)

LLM:
if ((tvy, > 11) A (bp < 0.55)) then collision (C=96%)
if ((£y, > 6) A(d(0) = 7) A (Lay; > 32)) then collision (C=66%)
if ((|Fo| > 3103)) then collision (C=7%)
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Temporal dynamics into ML: results

Does machine learning (ML) help us in synthesizing temporal dynamics into detection?

DT:
if ((tw, > 15) A (D = 1.7)) then collision (C=70%)
if ((11 < ¢y, < 15) A (d(0) < 6)) then collision (C=14%)
if ((twy = 15) A (D < 1.7) A (d(0) < 8)) then collision (C=8%)

LLM:
if ((tvy, > 11) A (bp < 0.55)) then collision (C=96%)
if ((£y, > 6) A(d(0) = 7) A (Lay; > 32)) then collision (C=66%)
if ((|Fo| > 3103)) then collision (C=7%)

Feature ranking: ¢,,, tq.,br, d(0), Fy,

Complex rules on integrals, still preserving reliable prediction, if Isys is not used.
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From intelligible analytics to cognitive
machine learning

The analysis makes evident that integrals modulated by the
compromised car capture sufficient knowledge to infer the
attack, thus disregarding the other features.

However, f([I,) outlines a complex relationship of ¢, and
tg, with 2 = 4,...,6 (11 rules with LLM and 8 with DT
with 4 conditions, on average). A simplification is therefore
introduced.
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From intelligible analytics to cognitive
machine learning

The analysis makes evident that integrals modulated by the
compromised car capture sufficient knowledge to infer the
attack, thus disregarding the other features.

However, f([I,) outlines a complex relationship of ¢, and
tg, with 2 = 4,...,6 (11 rules with LLM and 8 with DT
with 4 conditions, on average). A simplification is therefore
introduced.

Cognitive ML: the human operator tends to reproduce and reinterpret the
reasoning carried out by artificial intelligence and change it in a new "man-
machine” model.
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From intelligible analytics to cognitive
machine learning

The analysis makes evident that integrals modulated by the
compromised car capture sufficient knowledge to infer the
attack, thus disregarding the other features.

However, f([I,) outlines a complex relationship of ¢, and
tg, with 2 = 4,...,6 (11 rules with LLM and 8 with DT
with 4 conditions, on average). A simplification is therefore
introduced.

Cognitive ML*: the human operator tends to reproduce and reinterpret the
reasoning carried out by artificial intelligence and change it in a new "man-
machine” model.

*

https://www.quora.com/What-is-the-difference-between-cognitive-computing-and-machine-learning
https://www.ibm.com/blogs/nordic-msp/artificial-intelligence-machine-learning-cognitive-computing/

Cognitive ML is often understood with other meanings:
http://www.lscp.net/persons/dupoux/bootphon/index.html
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From intelligible analytics to cognitive
machine learning

The analysis makes evident that integrals modulated by the
compromised car capture sufficient knowledge to infer the
attack, thus disregarding the other features.

However, f([I,) outlines a complex relationship of ¢, and
tg, with 2 = 4,...,6 (11 rules with LLM and 8 with DT
with 4 conditions, on average). A simplification is therefore
introduced.

Cognitive ML here:

if((ty, > K -y, 1))V ((tqg, > K - 1gq, ,) then apply £,
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From intelligible analytics to cognitive

machine learning

The analysis makes evident that integrals modulated by the
compromised car capture sufficient knowledge to infer the
attack, thus disregarding the other features.

However, f([I,) outlines a complex relationship of ¢, and
tg, with 2 = 4,...,6 (11 rules with LLM and 8 with DT
with 4 conditions, on average). A simplification is therefore
introduced.

Cognitive ML here:

if((ty, > K -y, 1))V ((tqg, > K - 1gq, ,) then apply £,
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F... example

80 ¢ . . . . 25
= speed car(c)0
75 speed c1 ]
speed c2
70 speed c3 b 20 -
Sspeed c4
65 speed c5 .
speed c6
= 6801 speed c7 . T 15
= =N
= 551 i EE:’.
B g
o 12
250 . o 10
45 - 7
40 . 5
35 7
30 1 1 1 1 0
0 20 40 60 100 120 0 20

time [s]

Fig. 4. Countermeasure to the attack: speed.

K=2, F,,,=-500.

distance c0-c1
distance ci-c2
distance c2-c3
distance c3-c4
distance c4-c5
distance c5-c6
distance c6-c7

60
time [s]

100

Fig. 5. Countermeasure to the attack: distance.
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K configuration via ML

if((ry, > K -1y, )V ((tg, > K -1q4,_,) then apply F..

Otg, = tg, — td; 4» ¢ = 1,..N
Is, = [0ty.004]

I = [I.sys-- Iﬁb]
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K configuration via ML

if((ry, > K -1y, )V ((tg, > K -1q4,_,) then apply F..

Otg, = td, — td;_4» @ = 1,..N
Is, = [0ty.004]

I = [I.sys-- Iﬁb]

Find f(Is,)!
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K configuration via ML

if((ty, > K -1y, )V ((tag, > K - 1q,_,) then apply F.s

Otg, = td, — td;_4» @ = 1,..N
Is, = [0ty.004]

I = [I.sys-f I(?L]

Find f(Is,)!

if("-'ut- < 2)V (""Ut' — by, < 2)\#’
(ta, — ta, , < 0.18)V (g, — td,., < 1) then apply F..q

— by,
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Find f(Isys. Fres)!

F... configuration
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F... configuration

Find f(Isys. Fres)!

if (|Fo| < 2762) A (D < 1.7) then safe
if (|Fo| < 1253) A (D < 3.5) then safe
if (D < 1.3) then safe

if (|Fo| > 560) A (D > 3.7T) A (br £ 0.6) A (|Fres| > 97) then collision

it (|Fp| < 719) then safe

it (|Fo| > 1173) A (d(0) > 5) A (v(0) < 132) A (D > 3) then collision
if (|Fp| > 1089) A (d(0) > 5) A (v(0) < 132) A (D > 2.6) A (bp <

0.56) A (| Fres| > 126) then collision

F... is not relevant! Feature ranking: { D, Fy, v(0),bp, Fies,d(0)}

C e [30%, 45%]
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F... configuration

Objective: safety regions with FNR=0%.

F,.. optimal thresholds are found for different F, intervals => F, should be known to
calibrate the response to the attack:



F... configuration

Objective: safety regions with FNR=0%.

F,.. optimal thresholds are found for different F, intervals => F, should be known to
calibrate the response to the attack:

Fy € [—1000, —1( ] Feo.. = —2000, d°(0) = 10, v(0) < 100
Fy € [—2000, —1000]: F° = —2000, d°(0) = 17, v(0) < 80
Fo € [—Fonaz. —2000]: F2. . = —4000, d°(0) = 26.5, v(0) < 55

independently to D and b
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F... configuration

Objective: safety regions with FNR=0%.

F,.. optimal thresholds are found for different F, intervals => F, should be known to
calibrate the response to the attack:

Fy € [—1000, —10]: F2.. = —2000, d°(0) = 10, v(0) < 100
Fy € [—2000, —1000]: F°_ = —2000, d°(0) = 17, v(0) < 80
Fo € [—Forraz. —2000]: F2., = —4000, d°(0) = 26.5, v(0) < 55

independently to D and b

The worst case is actually impractical as it leads to platoons working at low speed and
large distances. This is however not surprising as it is a platoon able to resist to attack
under extreme braking conditions.
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Safety



Safety: air bag

Automotive systems are required to operate under strict safety constraints.

FMEA (Failure Mode and Effects Analysis) analyses potential failures of system
components, assessing and ranking the risks associated with them, and then identifying
and addressing the most serious problems.

The FMEA process can be time-intensive and the analysis is sometimes informal.

72



Safety: air bag

The airbag system consists of three major component types: sensors, crash evaluators and
actuators. The sensors are used to detect accidents such as impacts or the car rolling, and
the information from the sensors is then processed by two independent crash evaluators. If

both evaluators agree that a crash has occurred, then the actuators respond by deploying
the airbags.
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Safety: air bag

The use of a second crash evaluator is a recent addition to airbag systems, aimed at
avoiding unnecessary deployment, which is seen as the most dangerous malfunction that
can occur.

FMEA considers variants of the airbag system with both one and two crash evaluators.

Gethin Norman and David Parker, Quantitative Verification Formal Guarantees for Timeliness, Reliability and

Performance, Knowledge Transfer Report, London Mathematical Society and Smith Institute for Industrial 74
Mathematics and System Engineering.



Safety in cyber physical system



Sa-fe -—@P safecop.eu Safety:
safeCOP project - italian use case

Cyber-physical systems, such as automobiles, cars, and medical devices, comprise both a
physical part and a software part, whereby the physical part of the system sends information
about itself to the software part, and the software sends information, usually in the form of
commands, to the physical part.

P. G. Larsen, J. Fitzgerald, J. Woodcock, and T. Lecomte. Trustworthy Cyber-Physical Systems Engineering, Chapter
8: Collaborative Modelling and Simulation for Cyber-Physical Systems. Chapman and Hall/CRC, September 2016,
ISBN 9781498742450.


http://www.safecop.eu/

Safe-9P

VEHICLE TO INFRASTRUCTURE COMMUNICATION
USE CASE 3

SafeCOP ITA pilot
https://www.youtube.com/watch?v=4VirpAOHzP0&t=93s



https://www.youtube.com/watch?v=4VirpA0HzP0&t=93s

Safe -—@P safecop.eu
safeCOP project - italian use case

Hazard risk analysis example (On Board Unit, Road Side Unit).

Safety:

ID Hazard Description Safety Goal ASIL  Safe state

HO The OBU warns the driver of a None QM N/A
potential danger while there 1s
no actual danger

Hl The OBU  notifies the None QM NA
mfrastructure of a potential
danger while there i1s no actual
danger

H2 The OBU fails to warn the None QM NA
driver about the presence of
danger

H3 The OBU fails to notify the The OBU shall guarantee ASIL- Inhibit
mfrastructure about the presence notification of the presence of a A transmission to the
of a danger danger to the infrastructure mfrastructure

H9 The OBU communicates wrong The OBU shall transmit correct ASIL-  Inhibit
dynamic or operational state dynamic and operational state A transmission to the
mformation to the infrastructure  data to the infrastructure mfrastructure

ID Hazard Description Safety Goal ASIL.  Safe state

HO The RSU-C fails to detect a car The RSU-C shall guarantee that ASIL- Notify a ASIL
accident or a stationary vehicle there are no car accident or B reduction and
n a dangerous position stationary vehicles 1f it has mhibit any other

detected none transmission to the
CU

H2 The RSU-C fails to detect a The RSU-C shall guarantee that ASIL-
vehicle moving along a there are no vehicle moving B
forbidden direction along forbidden direction if i1t

has detected none
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Safety and Al

« Sistemi di guida autonomi

https://www.dmove.it/news/tesla-annuncio-shock-il-computer-per-la-guida-autonoma-e-qgia-
pronto-presentazione-il-19-aprile
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Safety and Al

Trustworthy Al

Trustworthiness is a prerequisite for people and societies to develop, deploy and use
Al systems.

Without Al systems — and the human beings behind them — being demonstrably
worthy of trust, unwanted consequences may ensue and their uptake might be
hindered, preventing the realisation of the potentially vast social and economic

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai



https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Safety and Al

Trustworthy Al
https://ec.europa.eu/digital-single-market/en/news/ethics-quidelines-trustworthy-ai

Framework for Trustworthy Al

e

INTRODUCTION

[not dealt within this docurnent)

HY|

e

Foundations of Trustworthy Al ] 4 Ethical Principles -Respatt forhuman autoncry

«Prevantion ofharmn
«Fairness
- Bxplic atility

Ensure acharence to ethical principles basedon Acknowledge and address tersions
fundamental rights botwaan thern

[ Trustworthy Al
o

CHAPTI

-
[ Realisation of Trustworthy Al ] « Hurnan agency andoversight
- Technical robustness and safety
Ensure mplementatonof the key requirements Continuously evaluate and address these «Prvary and datagovernance
= throughout the Al systerris life cyd e throuch « Trarspaency
= « Diversity, non-discrirrination and faimess
e « societal and erwironmental wellbeing
= - Accourtablity
w
Technical Non-Technical
Methods Methods
-
= 7
==
E Ensure operationalisation of the key requirements Tailar to the specific 4 application
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https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Safety and Al

Gruppo ISO/IEC JTC 1/SC 42:
provide guidance to JTC 1, IEC, and ISO committees developing Artificial Intelligence
applications

https://itclinfo.org/jtc1-press-committee-info-about-jtc-1-sc-42



https://jtc1info.org/jtc1-press-committee-info-about-jtc-1-sc-42

Safety and Al

+.007 x
: x +
% sign(VaJ(0, 2, y)) esign(VgJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: Adding an imperceptibly small vector to an im-
age changes the GoogLeNet [39] image recognizer’s classifi-
cation of the image from “panda” to “gibbon.” Figure taken
from Goodfellow et al. [9].

« Approccio controllistico

v'Regions of attraction: The Lyapunov Neural Network: Adaptive Stability
Certification for Safe Learning of Dynamical Systems.

« Approcci di verifica formale

v'Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.

v'Tools (PRISM, NuSMV) extesions for cyber physical systems (our idea: starting
with intelligible safety regions...!)



Our approach:
refinement of ML models via formal logic



if
if
if
if
if
if
if

Sy o~ W o W~

((de
((ve
((de
((Fo
((de
((Fe
((Fo

FO

6585
6369
3531
4726
2395
3196

1050
1050
1050
1050
1050
1050

!

<= 2.380932) && (v& > 29)) return "collision";

>
>
>
>

Intelligible analytics

d_ms
0.005
0.005
0.005
0.005
0.005
0.005

rule generation

do

5.092
4.101
2.326
2.108
2.016
2.612

<= 3018)) return "safe";

vl

60
49
59
44
27
18

!

prob

0.380
0.290
0.290
0.350
0.380
0.110

collision

collision
safe
collision
collision
collision

safe

Extraction of intelligibles
rules for safety
(classification problem)
after brute force
simulation method.

24 && vO <= 73) && (prob <= ©.165000)) return "safe";
2.387646 && do <= 2.818141) && (v@ > 35)) return "collision";
3770) && (ve > 79) && (prob > ©.1550008)) return "collision";
2.455520) && (vO <= 34) && (prob <= ©.385000)) return "safe";
<= 3771) && (do > 2.880642)) return "safe";



Correction of ruleset with PRISM

Correction scheme when we are able to create in PRISM a Discrete Time Markov chain
with n-dimensional status in a n-variables classification problem.

Data Analysis with Rulex

oncs [ e
' |
» »
Transition . Model
Matrix

Logical Analysis with PRISM

Final result

Simulation Corrected Ruleset




Correction of ruleset with PRISM

When dimension of status of DTM in PRISM are lower the number of variables involved
in data analysis, a new simulation after rules extraction have to be done before correction.

Data Analysis with Rulex

Simulation L3 » BRE

Logical Analysis with PRISM \ Final result

Corrected Ruleset




Correction of ruleset with PRISM

if ((do < 1.876431) && (v@® > 36)) return "collision";
if ((do > 3.372723) & (vO <= 85)) return "safe";

‘ We can use the probabilistic informations derived from
PRISM for having more control on ruleset obtained in

Rulex. A rule can became more strict or flexible, depending
on our goals.

if ((do < 1.876431) && (v@ > 48)) return "collision";
if ((do > 4.000000) & & (vO <= 85)) return "safe";



THANK YOU



Al ethical issues: micro drone killer

www.youtube.com/watch?v=TI02gcs1YvM


https://www.youtube.com/watch?v=TlO2gcs1YvM

Performance prediction: state of the art

Many control algorithms
Mathematical modeling vs brute force simulation
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Fig. 3. Percentage of cars involved in accidents versus MPR for single-lane
tests for the different protocols and average speeds of 130 and 150 km/h.
(a) Reference speed of 130 km/h. (b) Reference speed of 150 km/h.

M. Segata and R. Lo Cigno, "Automatic Emergency Braking: Realistic Analysis of Car Dynamics and Network Performance," in IEEE Transactions on Vehicular
Technology, vol. 62, no. 9, pp. 4150-4161, Nov. 2013. 92
doi: 10.1109/TVT.2013.2277802.



Fully developed platform
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Rulex Logic Learning Machines (LLM)

Compared to Traditional Methods

p &

MODELS ARE FULLY INTELLIGIBLE (RULES)

RULES WITH MULTI-VARIABLE CORRELATIONS v

CAN TREAT QUALITATIVE VARIABLES

PRIOR INFORMATION NOT NEEDED

MODELING IS HARDLY AFFECTED BY
PARAMETERS SETTING

REDUNDANT VARIABLES DETECTED AND IGNO

KEY VALUES FOR ORDERED VARIABLES ARE
AUTOMATICALLY DETERMINED

RELEVANCE INDICATORS FOR RULES,
VARIABLES & THRESHOLDS

MODELS CAN BE MODIFIED AND TESTED
INTERACTIVELY

HIGH ACCURACY



Covering and error of rules:
understand the impact of the features

# Cond Output Cond 1 Cond 2 Cond 3 Cond 4
1( 2 cellision = 1 init. distance £ 24 init. speed » D
2 2 collisien =0 braking force » 500  init. speed = 30
3 3 cellisien = 1 braking force = 1345 init. distance £ 33 init. speed > 33
4 2 cellision = 1 init. distance £ 30 init. speed > 64
5 1 cellision =0 init. speed = 24
] 3 cellisien = 1 braking force = 1816 comm. delay > 34 init. speed > 53
7 4 cellision =0  braking force > 217 weight > 1019 init. distance » 24 init, speed = 47
8 4 cellision = 1 braking force = 2510 weight » 1221 init. distance £ 25 init. speed = 17
# Patt. Covering who Cond 1 who Cond 2 who Cond 3 who Cond 4
1 4261 550105609012 )39.1222717672 3.6376437436
2 4139 43, 753 | 3.5757429331 51.7274704035
3 4261 37.8549636236 392396151138 8.2140342643 71579441446
4 4261 354846280216 13.0485801433 43.4639755926
5 4139 346943706200  65.3056293791
6 4261 339122271767 17.3433466322 7.8150668857 24,0553860396
7 4139 320125634211 0.2416042522 183619231608 10.6739079423 159942014979
8 4261 285379019010 5.0222952359 255339122272 221344238442 0.0704060080
# Patt. Error ond 1 who Cond 2 w'o Cond 3 who Cond 4
1 4139 4,0589514375  49.0939840541 16.0666827736
2 4261 28162403192 3.0509270124 75.5925839005
3 4139 4.8562454699  20.1014737859 3.7501812032 133607151486
4 4139 3.9864701619  9.8574534912 44.9867117661
5 4261 2.3580849566  97.4419150434
] 4139 3.3513825079  9.7608117903 3.6963450392 280502536845
7 4261 4,8345458812  1.2907768130 1.0795587390 123210513964 | 23.8206993663 95
8 4139 3.7448659096  1.7153901909 7.0306837400 226866392849 3.1166048538



Visualization of rules helps understand

collision

B
|

Total number of rules: 31

Rule #19:

Output value: 1
Covering:
55.0105609012%

Error:
4.0589514375%

Conditions:

init. distance <= 24

init. speed > 30

4
[7]
m
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