DataScienceSeed#6 – Stock Market Machine Learning & Caffè con Pandas

 

23 Maggio 2019, Digital Tree, Genova, ore 18

link eventbrite

Ecco l’agenda del sesto incontro, a cavallo tra la frontiera della ricerca e la didattica sui nostri dataset.

Merello e Finanza

Mercati Finanziari: affrontare con il Machine Learning un un problema davvero complesso

Simone Merello, specialista in AI for Finance presso Nanyang Technological University of Singapore

Predire l’andamento del mercato finanziario è un problema complesso, al punto che non ne è ancora chiara la fattibilità stessa. Sono state tentate tutte le tecniche di Machine Learning ed ogni sorta di reti naurali, ma i problemi sono tanti ed a tanti livelli. Simone ci racconterà come affrontare un problema così complesso presentandoci le tecniche usate nelle ultime ricerche, in un percorso tra le difficoltà e le opportunità valido per molte classi di problemi.


Caffe pandas

Caffè con Pandas: cosa abbiamo imparato dal Coffe Machines Dataset

A Febbraio i ragazzi di Flairbit ci hanno offerto un problema di manutenzione predittiva su una flotta di macchine del caffè professionali.  Ci abbiamo lavorato e siamo pronti a mostrarne i risultati alla community. Parleremo di Pandas, la libreria Python che non può mancare nella cassetta degli attrezzi del data scientist, per passare da un dataset selvaggio ad un docile datasetche daremo in pasto ad un modello di machine learning di tipo “classico” ma per niente banale, ed ad una rete neurale.

Riusciremo a prevenire i guasti ed a meritarci un buon caffè?


I meetup DataScienceSeed sono in collaborazione con IAML, Italian Association for Machine Learning

Questo incontro è possibile anche grazie al supporto di

Wonder Talent Investor

Gruppo IB

DataScienceSeed#5 – Arte Cultura e Data Science

Se hai partecipato a questo meetup, per favore lasciaci un feedback qui!

Ecco l’agenda del quinto incontro,  tutto legato ad attività di ricerca tra Digitale, Arte e Beni Culturali

In codice ratio

In Codice Ratio: trascrizione automatica di manoscritti medievali

Simone Scardapane: Ricercatore @ Università La Sapienza e Presidente IAML

Il progetto di ricerca  In Codice Ratio, promosso da un team di Roma Tre, si pone l’obiettivo di sviluppare tecnologie per l’estrazione automatica dell’informazione da documenti storici, a partire da un caso di studio d’eccezione: l’Archivio Segreto Vaticano, uno dei più grandi archivi storici al mondo in termini di dimensioni e valore dei documenti custoditi. L’analisi di documenti così antichi presenta una serie di sfide specifiche: i testi sono manoscritti, in lingua latina ed accessibili unicamente in forma di immagine. Nel talk si descrivono i risultati ottenuti finora, i problemi da affrontare nel futuro, e soprattutto come le più recenti tecniche di deep learning (reti convolutive, U-Net, sistemi sequence2sequence) aiutano e guidano nella possibile risoluzione di queste sfide.

Presentazione di Simone Scardapane in formato pdf
Presentazione di Simone Scardapane in formato pdf

Metodi e Modelli 3D per l’analisi, la classificazione e l’interpretazione di reperti archeologici

Silvia Biasotti, Bianca Falcidieno, CNR IMATI

Per rispondere alla crescente necessità di metodi per la quantificazione della similarità tra frammenti e l’identificazione di elementi stilisticamente compatibili, IMATI ha sviluppato tecniche di analisi, classificazione e riconoscimento di forma, che vanno dall’identificazione di caratteristiche geometriche peculiari di un gruppo di oggetti, al riconoscimento di particolari configurazioni o strutture, fino all’identificazione e classificazione di parti con particolari decori e funzionalità. A partire da tali premesse è stata sviluppata una ricca base metodologica per la classificazione, la ricerca e il confronto di oggetti attraverso similarità di forma, declinando il concetto di similarità rispetto alle diverse sfaccettature che tale termine suggerisce: similarità geometrica, strutturale, funzionale o semantica.

La classificazione, la riunificazione e il riconoscimento di frammenti e decorazioni sono argomenti trattati nel progetto Horizon 2020 GRAVITATE.

Presentazione di Bianca Falcidieno e Silvia Biasotti in formato pdf
Presentazione di Bianca Falcidieno e Silvia Biasotti in formato pdf

I meetup DataScienceSeed sono in collaborazione con IAML, Italian Association for Machine Learning

Questo incontro è possibile anche grazie al supporto di